BIOCHEMICAL PROFILE, ANTIOXIDANT ACTIVITY AND BIOMETHANISATION OF THE MICROALGA Chlorella vulgaris

Full Article - PDF

Published: 2021-12-29

Page: 33-40


KHALED SEBEI *

Protéomie Fonctionnelle and Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, 09, Rue Docteur Zouheïr Safi – 1006, Tunis, Tunisia and Université de Tunis El-Manar. 2092 Tunis, Tunisia.

ASMA GNOUMA

Université de Tunis El-Manar. 2092 Tunis, Tunisia.

*Author to whom correspondence should be addressed.


Abstract

Over the last decade, the use of microalgae for its high quality nutritional raw material and its ability to produce high amounts of lipids, proteins and different energy forms has become a challenge worldwide. The characterization of  the biochemical profile of a green microalgae Chlorella sp which was isolated from a Tunisian fresh water lagoon showed that this microalga accumulated 18% of lipid content (19% FA ω 3: 15% of C18:3 ω3, 3% EPA and 0.69% DPA) and a high protein content reaching up to 60%. of dry weight. Moderately producer of natural antioxidant, Chlorella sp. accumulates 3.7 mg AGE/ g DW and an inhibition concentration (IC 50) of 595µg/ ml. Finally, the anaerobic digestion of this microalgae provided 12.56% of CH4 biogas.

Keywords: Chlorella sp, oil, fatty acids, antioxydant, proteins, biogas


How to Cite

SEBEI, K., & GNOUMA, A. (2021). BIOCHEMICAL PROFILE, ANTIOXIDANT ACTIVITY AND BIOMETHANISATION OF THE MICROALGA Chlorella vulgaris. Asian Journal of Microbiology and Biotechnology, 6(2), 33–40. Retrieved from https://ikprress.org/index.php/AJMAB/article/view/7561

Downloads

Download data is not yet available.

References

Hallenbeck PC, Ghosh D. Improvements in fermentative biological hydrogen production through metabolic engineering. Journal of Environmental Management. 2012;95:(S360-S364).

Cerón-García MC, Macías-Sánchez MD, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Applied Energy. 2013;103:(341–349).

Kim KN, Heo SJ, Song CB, Lee J, Heo MS, Yeo IK. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage. Process Biochemistry. 2006;41:2393–2401.

Karavita R, Senevirathne M, Athukorala Y, Affan A, Lee YJ, Kim SK. Protective effect of enzymatic extracts from microalgae against DNA damage induced by H2O2. Marine Biotechnology. 2007;9:479–490.

FitzGerald JR, Murray AB. Bioactive peptides and lactic fermentations. International Journal Diary Technology. 2007;59:118–125.

Rajasulochana P, Krishnamoorthy P, Dhamotharan R. Biochemical investigation on red algae family of Kappaphycus Sp.” International Journal of Chemical and Pharmaceutical Research. 2012;4(10):4637-4641.

Takagi M, Watanabe K, Yamaberi K, Yoshida T. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Applied Microbiology and Biotechnology. 2000;54:12–21.

Cha TS, Chen JW, Goh EG, Aziz A, Loh SH. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technology. 22011;102:10633-10640.

Hsieh C-H, Wu W-T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology. 2009;100:3921–3926.

Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnology and Bioengineering. 2009;102:100–112.

Ratha SK, Prasanna R, Prasad RBN, Sarika C, Dhar DW, Saxena AK, Dolly W, Anil K. Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation. Aquaculture (sous presse); 2013.

Vyas AP,Verma JL, Subrahmanyam N. A review on FAME production processes Fuel. 2010;89:1–9.

Biller P, Riley R, Ross AB. Catalytic hydrothermal processing of microalgae: Decompositionand upgrading of lipids. Bioresource Technology. 2011;102:4841–4848.

Yeh KL, Chang JS, Chen WM. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris” ESP-31. Eng. Life Sci. 2010;10:201–208.

Yeh KL, Chang JS. Nitrogen starvation strategies and photobioreactor design for enhancing lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnol. J. 2011;6:1–9.

Chu WL. Biotechnological applications of microalgae IeJSME. 2012;6 (Suppl 1):S24-S37.

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. Journal of Bioscience et Bioengineering. 2006;101:87-96.

Gladysheva M, Sushchika NN, Makhutova ON. Production of EPA and DHA in aquatic ecosystems and their transfer to the land Prostaglandins & other Lipid Mediators. Article in press; 2013.

Batista AP, Gouveia L,. Bandarra NM, Franco JM, Raymundo A. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research. 2013;2:164-173.

Teimouri M, Amirkolaie AK, Yeganeh S. The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss) Aquaculture. 2013;396–399:14–19.

Ronquillo JD, Fraser J, McConkey A-J. Effect of mixed microalgal diets on growth and polyunsaturated fatty acid profile of European oyster (Ostrea edulis) juveniles. Aquaculture. 2012;360-361:(64–68).

Mustafa MG, Takeda T, Umino T, Wakamatsu S, Nakagawa H. Effects of Ascophyllum and Spirulina meal as feed additives on growth performance and feed utilization of red sea bream, Pagrus major. Journal of the Faculty of Applied Biological Science. Hiroshima University. 1994;33:125–132.

Frampton DM, Gurney RH, Dunstan GA, Clementson LA, Toifl MC, Pollard CB, Burn S, Jameson ID, Blackburn SI. Evaluation of growth, nutrient utilization and production of bioproducts by a wastewater-isolated microalga Bioresource Technology. 2013;130(261–268).

Chisti Y. Biodiesel from microalgae. Biotechnology Advances. 2007;25:294–306.

Sturm BSM, Lamer SL. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl. Energy. 2011;88:3499–3506.

Prajapati SK, Kaushik P, Malik A, Vijay VK. Phycoremediation and biogas potential of native algal isolates from soil and wastewater ». Bioresource Technology. 2013;135:232–238.

Sialve B, Nicolas B, Olivier B. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009;27:409–416.

Mussgnug JH, Klassen V, Schluter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 2010;150:51–56.

Lakaniemi AM, Hulatt CJ, Thomas DN, Puhakka JA. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol. Biofuels. 2011;4(34):1–12.

Ras M, Lardon L, Sialve B, Bernet N, Steyer JP. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 2011;102:200–206.

Zamalloa C, Boon N, Verstraete W. Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl. Energy. 2012;92:733–738.

Fuentes MMR, Fernandez GGA, Perez JAS, Guerrero JLG. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem. 2000;70:345-353.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 1956;28:350–356.

Bondioli P, Della Bella L, Rivolta G, Chini Zittelli G, Bassi N, Rodolfi L, David C, Matteo P, David C, Tredici MR. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol. 2012;114:567–572.

Yeh KL, Chang JC. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalaga Chlorella vulgaris ESP 31 » Bioressource Technology. 2012;105:120-127.

Lopes-Lutz DS, Alviano DS, Alviano CP, Kolodziejczyk P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry. 2008;69:1732-1738.

Shimamatsu H. Mass production of Spirulina, an edible microalga, Hydrobiologia. 2009;512:39–44.

Becker EW. Microalgae Biotechnology and Microbiology, Cambridge University Press, Cambridge; 1994

Nishibori S, Namiki K. Antioxidative substances in the green fractions of the lipid of Aonori (Enteromorpha sp.). Journal of Home Economics of Japan. 1988;39:1173–1178.

Chen F, Li HB, Wong RNS, Ji B, Jiang Y. Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed countercurrent chromatography. J Chromatogr; A. 2005;1064:183-186.

Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 1996;14:421-426.

Dębowski M, Zieliński M, Grala A, Dudek Ma. Algae Biomass as an alternative substrate in biogas production technologies. Renewable and Sustainable Energy Reviews. 2013;27:596–604.

Yeh KL, Chen CY, Chang JS. pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using acetic acid as the carbon source. Biochemical Engineering Journal. 2012;64:1-7.

Heredia-Arroyo T, Wei W, Ruan R, Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials Biomass and Bioenergy. 2011;35:2245- 2253

Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F. Differential lipid and fatty acid profiles of phautoautrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioressource Technology. 2011;102:106-110.

Converti A, Cassaza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production » Chemical engineering and Processing. 2009;48:1146-1151.

Guil-Guerrero JL, Navarro-Juárez R, López-Martínez JC, Campra-Madrid P, Rebolloso-Fuentes MM.Functionnal properties of the biomass of three microalgal species. J. Food Eng. 2004;65:511–517.

Tokusoglu, O., Unal, M.K., 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana, Journal of Food Science 68 (2003) 1144–1148.

Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production, Journal of Industrial Microbiology and Biotechnology. 2009;36:269–274.

Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 2000;27:631–635.

Petkov G, Garcia G. Which are fatty acids of the green alga Chlorella? Biochemical Systematics and Ecology. 2007;35(5):281-285.

Li X, Hong-ying H, Yu-Ping Z. Growth and lipid accumulation properties of a freshwater microalgae Scendesmus sp Under Different Cultivation Temperature; 2011.

Jimenez-Escrig A, Jimenez-Jimenez I, Pulido R, Saura-Calixto F. Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric. 2001;81:530-534.

Horincar VB, Parfene1 G, Bahrim G. Evaluation of bioactive compounds in extracts obtained from three romanian marine algae species. AC Romanian Biotechnological Letters. 2011;16(6).

Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102:771-776.

Goh SH. A Comparison of the Antioxidant Properties and Total Phenolic Content in a Diatom, Chaetoceros sp. and a Green Microalga, Nannochloropsis sp. Journal of Agricultural Science. 2010;2(3).

Nagayama, K., Shibata, T., Fujimoto, K., Honjo, T., & Nakamura, T., 2003. Algicidal effect of phlorotannin from brown alga Ecklonia kurome on red tide microalgae. Aquaculture, 218, 601–611