Published: 2022-10-29

DOI: 10.56557/ajmab/2022/v7i27913

Page: 1-6


Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey.


Metallurgical and Materials Engineering Department, Istanbul University-Cerrahpasa, 34320, Istanbul, Turkey.


Metallurgical and Materials Engineering Department, Istanbul University-Cerrahpasa, 34320, Istanbul, Turkey.


Metallurgical and Materials Engineering Department, Istanbul University-Cerrahpasa, 34320, Istanbul, Turkey.

*Author to whom correspondence should be addressed.


In this study, biodegradable Fe-Zn alloys were fabricated by conventional powder metallurgy method for temporary implant applications. Magnesium, iron and zinc are the 3 main biodegradable metals. In general, biodegradation rate of the magnesium alloys is too high, while biodegradation rate of the zinc alloys is slow and zinc alloys are brittle. In addition, Zinc alloys show low strength and low plastic deformation. In general, biodegradation rate of the iron alloys is very slow. Biodegradable Fe-Zn alloys are promising for the temporary implant applications. In the present study, metal ion release amounts from the Fe-Zn alloy samples were lower than the toxic limit for the humans. Increasing Zn content from 0.5 to 12.0 weight % was decreased the elastic modulus of the alloys from 160 GPa to 125 GPa. Quantity of Zn and Fe ion release values were increased with the immersion time in SBF. Weight loss of the Fe-Zn alloys was increased with the immersion time. Increasing immersion time from 1 to 21 days increased the weight loss value from 0.4 to about 2.4 %. Increasing Zn content of the alloy raised the electrochemical corrosion rate of the alloy.

Keywords: Electrochemical corrosion, biomedical implant, biodegradation, fe-zn alloy, powder metallurgy

How to Cite

DEMIR, G., ALBITAR, B., ATAY, B., & MUTLU, I. (2022). PRODUCTION AND CHARACTERIZATION OF BIODEGRADABLE FE ALLOY. Asian Journal of Microbiology and Biotechnology, 7(2), 1–6.


Download data is not yet available.


Zhao L, Zhang Z, Song Y, Liu S, Qi Y, Wang X et al.. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater Des. 2016;108:136-44.

DOI: 10.1016/j.matdes.2016.06.080

Seyedraoufi ZS, Mirdamadi S. Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds. J Mech Behav Biomed Mater. 2013;21:1-8.

DOI: 10.1016/j.jmbbm.2013.01.023

Li H, Peng Q, Li X, Li K, Han Z, Fang D. Microstructures, mechanical and cytocompatibility of degradable Mg–Zn based orthopedic biomaterials. Mater Des. 2014; 58:43-51.

DOI: 10.1016/j.matdes.2014.01.031

Yang H, Wang C, Liu C, Chen H, Wu Y, Han J, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92-105.

DOI: 10.1016/j.biomaterials.2017.08.022, PMID 28858721.

Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7(9): 3515-22.

DOI: 10.1016/j.actbio.2011.05.008, PMID 21621017.

Zhao S, Seitz JM, Eifler R, Maier HJ, Guillory RJ II, Earley EJ, et al. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Mater Sci Eng C. 2017;76:301-12.

DOI: 10.1016/j.msec.2017.02.167

Bowen PK, Guillory RJ II, Shearier ER, Seitz JM, Drelich J, Bocks M, et al.. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater Sci Eng C. 2015;56:467-72.

DOI: 10.1016/j.msec.2015.07.022

Drelich AJ, Zhao S, Guillory RJ II, Drelich JW, Goldman J. Long-term surveillance of zinc implant in murine artery: surprisingly steady biocorrosion rate. Acta Biomater. 2017;58: 539-49.

DOI: 10.1016/j.actbio.2017.05.045, PMID 28532901.

Sadighikia S, Abdolhosseinzadeh S, Asgharzadeh H. Powder. Met. 2015;58(1): 61-6.

Azizi A, Haghighi GG. Fabrication of ZAMAK 2 alloys by powder metallurgy process. Int J Adv Manuf Technol. 2015;77(9-12):2059-65.

DOI: 10.1007/s00170-014-6611-z

Gülsoy HÖ, German RM. Production of micro-porous austenitic stainless steel by powder injection molding. Scr Mater. 2008;58(4): 295-8.

DOI: 10.1016/j.scriptamat.2007.10.004

Kafkas F, Ebel T. Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding. J Alloys Compd. 2014;617:359-66.

DOI: 10.1016/j.jallcom.2014.07.168

Berent K, Pstruś J, Gancarz T. Thermal and microstructure characterization of Zn-Al-Si alloys and chemical reaction with cu substrate during spreading. J Mater Eng Perform. 2016; 25(8):3375-83.

DOI: 10.1007/s11665-016-2074-8

Francis A, Yang Y, Virtanen S, Boccaccini AR. J Mater Sci Mater Med. 2015;26:138.

Kafri A, Ovadia S, Goldman J, Drelich J, Aghion E. The suitability of Zn–1.3%Fe alloy as a biodegradable implant material. Metals. 2018;8(3):153.

DOI: 10.3390/met8030153

Orinakova R, Orinak A, Buckova LM, Giretova M, Medvecky L, Labbanczova E, et al. Int J Electrochem Sci. 2013;8:12451-65.

Wang C, Tonna C, Mei D, Buhagiar J, Zheludkevich ML, Lamaka SV. Biodegradation behaviour of Fe-based alloys in Hanks’ Balanced Salt Solutions: Part II. The evolution of local pH and dissolved oxygen concentration at metal interface. Bioact Mater. 2022;7:412-25.

DOI: 10.1016/j.bioactmat.2021.05.014, PMID 34466742.

Čapek J, Vojtěch D, Oborná A. Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy. Mater Des. 2015;83:468-82.

DOI: 10.1016/j.matdes.2015.06.022

Hermawan H, Dube D, Mantovani D. Adv Mater Res. 2006;15-17:107-12.

Kokubo T, Takadama H. Biomaterials. 2007;27:2907-15.