Green Synthesis of Nanoparticles and their Role in our Everyday Lives: A Review


Published: 2023-04-08

DOI: 10.56557/ajmab/2023/v8i18193

Page: 17-51

Annika Durve Gupta *

Department of Biotechnology, B. K. Birla College (Autonomous), Kalyan Dist. Thane, MS-421301, India.

Arvind Gupta

Bioxia, H7, Rajalaxmi Commercial Complex, Kalher, Bhiwandi, Dist. Thane, MS-421302, India.

*Author to whom correspondence should be addressed.


Nanotechnology is a field of science that works with particles having dimensions of less than 100 nm, mainly the manipulation of individual molecules and atoms, permitting to tailor an extensive range of materials with various traits. In materials science, "green" synthesis has received a great deal of interest as a dependable, sustainable, and environmentally friendly technique for synthesising a wide range of materials/nanoparticles such as metal/metal oxide nanomaterials, hybrid materials, and bioinspired materials. As a result, green synthesis is recognised as a significant technique for reducing the harmful consequences associated with standard methods of synthesis for nanoparticles routinely used in laboratories and industry.

The field of nanotechnology has grown in importance in recent years, with a wide range of applications predicted in many disciplines of Science and Technology, with a significant influence on our everyday life. Nano-based chemicals have found a place in the market as consumer items such as paints, construction materials, cosmetics, medical treatment, the food sector, and so much more as a new development strategy. More helpful products, better treatments for illnesses, and more appropriate building materials can be produced because of nanotechnology. Nanoparticles can be used in a wide range of everyday items, materials, and processes. We detailed the essential processes and mechanisms of "green" synthesis techniques, particularly for metal and metal oxides, in this study. This chapter also explores the most recent nanotechnology applications that have an impact on various aspects of human life.

Keywords: Nanoparticles, NP in agriculture, NP in environment, NP in cars, NP in textiles, Np in medicine, NP in sports, NP in cosmetics, NP in constructions

How to Cite

Gupta, A. D., & Gupta, A. (2023). Green Synthesis of Nanoparticles and their Role in our Everyday Lives: A Review. Asian Journal of Microbiology and Biotechnology, 8(1), 17–51.


Download data is not yet available.


Feynman RP. There’s plenty of room at the bottom: An invitation to enter a new field of physics. In: Proceedings of the annual meeting of the American Physical Society. Pasadena, CA: California Institute of Technology, 29 December 1959; 1960.

Taniguchi N, Arakawa C, Kobayashi T. On the basic concept of nanotechnology. In: Proceedings of the international conference on production engineering, Tokyo, Japan. 1974;26-9.

Drexler KE. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci U S A. 1981;78(9):5275-8.

Rai M, Ingle AP, Birla S, Yadav A, Santos CA. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol. 2016;42(5):696-719.

Abbasi GE, et al. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol. 2014.

Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280-94.

Pereira L, Mehboob F, Stams AJM, Mota MM, Rijnaarts HHM, Alves MM. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Bioethanol. 2015;35(1):114-28.

Thakkar K. N., Mhatre S. S., Parikh R. Y., Biological synthesis of metallic nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(2):257-26.

Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem. 2006;8(5):417-32.

Rajput N. Methods of preparation of nanoparticles—A review. Int J Adv Eng Technol. 2015;7(4):1806-11.

Kandasamy S, Prema RS. Methods of synthesis of Nano particles and its applications. J Chem Pharm Res. 2015;7(3):278-85.

Kataria S, et al. Role of nanoparticles on photosynthesis: avenues and applications. Nanomater Plants Algae Microorganisms. 2019;103-27.

Mukhopadhyay SS. Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl. 2014;7:63-71.

Ghidan AY, Al-Antary TM, Awwad AM, Ayad JY. Physiological effect of some nanomaterials on pepper (Capsicum annuum L.) plants. Fresenius Environ Bull. 2018;27(11):7872-8.

Ghidan AY, Al-Antary TM, Salem NM, Awwad AM. Facile green synthetic route to the zinc oxide (ZnONPs) nanoparticles: Effect on green peach aphid and antibacterial activity. J Agric Sci. 2017;9(2):131-13.

Yu T, Wei Q. Plasmonic molecular assays: recent advances and applications for mobile health. Nano Res. 2018;11(10):5439-73.

Paul R, Saville AC, Hansel JC, Ye Y, Ball C, Williams A, et al. Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano. 2019;13(6):6540-9.

Paul R, Ostermann E, Gu Z, Ristaino JB, Wei Q. DNA extraction from plant leaves using a microneedle patch. Curr Protoc Plant Biol. 2020;5(1): e20104.

Chalupowicz L, Dombrovsky A, Gaba V, Luria N, Reuven M, Beerman A, et al. Diagnosis of plant diseases using the nanopore sequencing platform. Plant Pathol. 2019;68(2):229-38.

Oren S, Ceylan H, Schnable PS, Dong L. High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors. Adv Mater Technol. 2017;2(12):1700223.

Li Z, Yu T, Paul R, Fan J, Yang Y, Wei Q. Agricultural nanodiagnostics for plant diseases: Recent advances and challenges. Nanoscale Adv. 2020;2(8):3083-94.

Baldwin EA, Nisperos MO, Chen X, Hagenmaier RD. Improving storage life of cut apples and potato with edible coating. Postharvest Biol Technol. 1996;9(2):151-63.

Benhamou N. Elicitor-induced plant defence pathways. Trends Plant Sci. 1996;1(7):233-40.

Gabler FM, Smilanick JL. Postharvest control of table grape gray mold on detached berries with carbonate and bicarbonate salts and disinfectants. Am J Enol Vitic. 2001;52(1):12-20.

Romanazzi G, Nigro F, Ippolito A, DiVenere D, Salerno M. Effects of pre- and post-harvest chitosan treatments to control storage greymould of table grapes. J Food Sci. 2002;67(5):1862-7.

Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28(11):1539-641.

Petersen K, Væggemose Nielsen P, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, et al. Potential of biobased materials for food packaging. Trends Food Sci Technol. 1999;10(2):52-68.

Chen F, Hu X. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol. 2005;103(3):331-7.

Tharanathan RN. Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol. 2003;14(3):71-8.

Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, et al. Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem. 2009;114(2):547-52.

Hu AW, Fu ZH. Nanotechnology and its application in packaging and packaging machinery. Packag Eng. 2003;24:22-4.

Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh M, Nagy JO, et al. A ’litmus test’ for molecular recognition using artificial membranes. Chem Biol. 1996;3(2):113-20.

Idolo Imafidon GI, Spanier AM. Unraveling the secret of meat flavor. Trends Food Sci Technol. 1994;5(10):315-21.

Haruyama T. Micro- and nanobiotechnology for biosensing cellular responses. Adv Drug Deliv Rev. 2003;55(3):393-401.

Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89-121.

Sekhon BS. Nanotechnology in agri-food production: An overview. Nanotechnol Sci Appl. 2014;7:31-53.

Duncan TV. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci. 2011;363(1):1-24.

Vermeiren L, Devlieghere F, Debevere J. Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam. 2002;19;Suppl:163-71.

Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/ silver composites. Biomaterials. 2005;26(14): 2081-8.

DOI: 10.1016/j.biomaterials.2004.05.030, PMID 15576182.

Necula AM, Dunca S, Stoica I, Olaru N, Olaru L, Ioan S. Morphological properties and antibacterial activity of nanosilver containing cellulose acetate phthalate films. Int J Polym Anal Char. 2010;15(6):341-50.

Sánchez Valdes S, Ortega-Ortiz H, Ramos-de Valle LF, Medellín-Rodríguez FJ, Guedea MR. Mechanical and antimicrobial properties of multilayer films with a polyethylene/ silver nanocomposite layer. J Appl Polym Sci. 2009;111(2):953-62.

Kim B, Kim D, Cho D, Cho S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere. 2003;52(1):277-81.

Karst D, Yang Y. Potential advantages and risks of nanotechnology for textiles. AATCC Rev. 2006;6:44-8.

Jatoi AS, et al. Current applications of smart nanotextiles and future trends. In: Nanosensors and nanodevices for smart multifunctional textiles. Vol. 2021. Amsterdam, the Netherlands: Elsevier. 2021;343-65.

Darwesh OM, Ali SS, Matter IA, Elsamahy T. Nanotextiles waste management: controlling of release and remediation of wastes. In: Nanosensors and nanodevices for smart multifunctional textiles. Amsterdam, the Netherlands: Elsevier. 2021;267-86.

Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia Xanthochymus. Asian Pac J Trop Biomed. 2012;2(12):953-9.

Shivaji S, Madhu S, Singh S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem. 2011;46(9): 1800-7.

Korbekandi H, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol. 2012;87(7):932-7.

Zinjarde S. Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci. 2009;3(1):74.

Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, et al. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res. 2009;11(2):279-88. doi: 10.1007/s11051-008-9378-z.

Du L, Jiang H, Liu X, Wang E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun. 2007;9(5):1165-70.

Deplanche K, Macaskie LE. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng. 2008;99(5):1055-64.

He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett. 2007;61(18):3984-7.

Philipse AP, Maas D. Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir. 2002;18(25):9977-84.

Marshall MJ, Beliaev AS, Dohnalkova AC, et al. c type cytochrome- dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLOS Biol. 2006;4:1324-33.

Ravindra BK, Rajasab AH. A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int J Pharm Pharm Sci. 2014;6(1):372-6.

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1(10):515-9.

Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces. 2006;47(2):160-4.

Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological syn- thesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 2007;61(6):1413-8.

Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK. Exploitation of Aspergillus niger for syn- thesis of silver nanoparticles. J Biobased Mater Bioenergy. 2008;2(3):243-7.

Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull. 2008;43(5):1164-70.

Sanghi R, Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol. 2009;100(1):501-4.

Ingle A, Rai M, Gade A, Bawaskar M. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparti- cle Res. 2009;11:2079-85.

Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, et al. Biosynthesis of silver Nano- particles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009;44(8):939-43.

Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009;71(1):133-7.

Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Micro- Biol. Lett Appl Microbiol. 2009;48(2):173-9.

Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine. 2009; 5(4):382-6.

Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparti- Cles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine. 2010;6(1):103-9.

Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull. 2006;39(1):22-8.

Binupriya AR, Sathishkumar M, Yun SI. Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf B Biointerfaces. 2010;79(2):531-4.

Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, trichothecium sp. J Biomed Nanotechnol. 2005;1(1):47-53. doi: 10.1166/jbn.2005.012.

Kowshik M, Vogel W, Urban J, et al. Microbial synthesis of semicon- ductor PbS nanocrystallites. Adv Mater 14. 2002;2 K:815-8.

Mourato A, Gadanho M, Lino AR, Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. 2011;1:1. doi: 10.1155/2011/546074.

Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotri- angles and silver nanoparticles using aloe vera plant extract. Biotechnol Prog. 2006;22(2):577-83.

Maensiri S, Laokul P, Klinkaewnarong J, et al. Indium oxide (in 2O3) nanoparticles using aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater. 2008;10:161-5.

Krishnaraj C, Jagan EG, Rajasekar S, et al. Synthesis of silver nanopar- ticles using Acalypha indica leaf extracts and its antibacterial activity against waterborne pathogens. Colloids Surf B Biointerfaces. 2010;1:1.

Jatoi Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces. 2009;68(1):55-60.

Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;1:1.

Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D, et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf B Biointerfaces. 2011;82(2):497-504.

Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. 2008;62(30): 4588-90.

Shankar SS, Rai A, Ahmad A, Sastry M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and poten- tial application in infrared-absorbing optical coatings. Chem Mater. 2005;17(3):566-72.

Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via ”green approach”. Colloids Surf A Physicochem Eng Asp. 2010;367(1-3):31-40.

Veerasamy R, Xin TZ, Gunasagaran S, et al. Biosynthesis of silver Nano- particles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc. 2010.

Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A. Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B Biointerfaces. 2010;79(1):235- 40.

DOI: 10.1016/j.colsurfb.2010.04.003.

PMID 20451362

Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357-61.

Parashar UK, Saxena PS. Bioinspired synthesis of silver nanoparticles. J Nanomater. 2009;4:159-66.

Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA. Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A. 2008;91(2):241-6.

Singh J, Singh N, Rathi A, et al. Facile approach to synthesize and characterization of silver nanoparticles by using mulberry leaves extract in aqueous medium and its application in antimicrobial activity. J Nano- structures. 2017;7:134-40.

Huang S, Chen JC, Hsu CW, Chang WH. Effects of Nano calcium carbonate and Nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotechnology. 2009;20(37):375102.

Han C, Qi CM, Zhao BK, Cao J, Xie SY, Wang SL, et al. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J Vet Pharmacol Ther. 2009;32(2):116-23.

Ghosh D, Pramanik A, Sikdar N, Ghosh SK, Pramanik P. Amelioration studies on optimization of low molecular weight chitosan nanoparticle preparation, characterization with potassium per sulfate and silver nitrate combined action with aid of drug delivery to tetracycline resistant bacteria. Int J Pharm Sci Drug Res. 2010;2:247-53.

Wang MQ, Wang C, Du YJ, Li H, Tao WJ, Ye SS, et al. Effects of chromium loaded chitosan nanoparticles on growth, carcass characteristics, pork quality, and lipid metabolism in finishing pigs. Livest Sci. 2014;161:123-9.

Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, et al. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct. 2012;3(7):737-44.

Feugang JM, Youngblood RC, Greene JM, Fahad AS, Monroe WA, Willard ST, et al. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J Nanobiotechnology. 2012;10:45.

Gahlawat G, Shikha S, Chaddha BS, Chaudhuri SR, Mayilraj S, Choudhury AR. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb Cell Factories. 2016;15:25.

Rosilo H, McKee JR, Kontturi E, Koho T, Hytönen VP, Ikkala O, et al. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding. Nanoscale. 2014;6(20):11871-81.

Ajmal M, Yunus U, Matin A, Haq NU. Synthesis, characterization and in vitro evaluation of methotrexate conjugated fluorescent carbon nanoparticles as drug delivery system for human lung cancer targeting. J Photochem Photobiol B. 2015;153:111-20.

Odhiambo JF, DeJarnette JM, Geary TW, Kennedy CE, Suarez SS, Sutovsky M, et al. Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol Reprod. 2014;91(4):97.

Barkalina N, Jones C, Kashir J, Coote S, Huang X, Morrison R, et al. Effects of mesoporous silica nanoparticles upon the function of mammalian sperm In vitro. Nanomedicine. 2014;10(4):859-70.

Agarwal S, Zhang Y, Maji S, Greiner A. PDMAEMA based gene delivery materials. Pharm Res. 2007;24:1590-8.

Kong M, Chen XG, Kweon DK, Park HJ. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr Polym. 2011;86(2):837-43.

Yuan Y, Gao Y, Zhao J, Mao L. Characterization and stability evaluation of b – carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int. 2008;41(1):61-8.

Qui Y, Park K. Environment sensitive-hydrogels for drug delivery. Adv. drug Devl. Rev. 2001;53:321-39.

Fakhouri FM, Casari ACA, Mariano M, Yamashita F, Mei LHI, Soldi V, et al. Effect of a gelatin-based edible coating containing cellulose nanocrystals (CNC) on the quality and nutrient retention of fresh strawberries during storage. IOP Conf Ser.: Mater Sci Eng Proceedings of the IOP Conference Series, 2nd International Conference on Structural Nano Composites (NANOSTRUC 2014). 2014;64.

Shi S, Wang W, Liu L, Wu S, Wei Y, Li W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng. 2013;118(1):125-31.

Yu Y, Zhang S, Ren Y, Li H, Zhang X, Di J. Jujube preservation using chitosan film with nano-silicon dioxide. J Food Eng. 2012;113(3):408-14.

Tang F, Li L, Chen D. Mesoporous silica nanoparticles: Synthesis, biocom-patibility and drug delivery. Adv Mater. 2012;24(12):1504-34.

Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials. 2014;35(28):8186-96.

Ma ZS, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly (ethylene oxide)-b-poly(epsiloncaprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A. 2008;86(2):300-10.

Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and selfassembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4(6):1752-61.

Almeida L, Ramos D. Health and safety concerns of textiles with nanomaterials. In IOP Conference Series. IOP Conf Ser.: Mater Sci Eng. 2017;254:102002.

Ibrahim NA. Nanomaterials for antibacterial textiles. In: Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Cape Town, South Africa: Academic Press; 2015;191-216.

Banerjee B, editor. Rubber nanocomposites and nanotextiles: Perspectives in automobile technologies. Berlin, Germany: Walter de Gruyter GmbH & Co KG; 2019.

Jadoun S, Verma A, Arif R. Modification of textiles via nanomaterials and their applications. In: Frontiers of textile materials: polymers, nanomaterials, enzymes, and advanced modification techniques. Vol. 2020. Beverly, MA: Scrivener Publishing LLC. 2020;135-52.

Bashari A, Shakeri M, Shirvan AR, Najafabadi SAN. Functional finishing of textiles via nanomaterials. In: Nanomaterials in the wet processing of textiles. Vol. 2018. Beverly, MA: Scrivener Publishing LLC. 2018;1-70.

Haque M. Nano Fabrics in the 21st century: A review. Asian J Nanosci Mater. 2019;2:120-256, 131–148.

Singh M, Vajpayee M, Ledwani L. Eco-friendly surface modification and nanofinishing of textile polymers to enhance functionalisation. In: Nanotechnology for energy and environmental engineering. Cham, Switzerland: Springer. 2020;529-59.

Revaiah RG, Kotresh TM, Kandasubramanian B. Technical textiles for military applications. J Text Inst. 2020;111(2):273-308.

Dogan O, Dag R. Application of Nano coating (SiO2) on textile products. J Chem Chem Eng. 2017;11:82-5.

Xu Q, Xie L, Diao H, Li F, Zhang Y, Fu F, et al. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym. 2017;177:187-93.

Korkmaz N, Alay Aksoy S. Enhancing the performance properties of ester-cross-linked cotton fabrics using Al2O3-NPs. Text Res J. 2016;86(6):636-48.

Abbas M, Iftikhar H, Malik MH, Nazir A. Surface coatings of TiO2 nanoparticles onto the designed fabrics for enhanced self-cleaning properties. Coatings. 2018;8(1):35.

DeLongChamp DM, Hammond PT. High contrast electro chromism and controllable dissolution of assembled Prussian Blue/polymer nanocomposites. Adv Funct Mater. 2004;14(3):224-32.

Lee YS, Wetzel ED, Wagner NJ. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci. 2003;38(13):2825-833.

Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J Mol Cat A. 2006;244(1-2):160-67.

Mohammad M, Ramkumar SS. Functionalised nanofibres for advanced applications. Ind J Fibre Text Res. 2006;31:41-51.

Lei Q, Hinestroza JP. Application of nanotechnology for high performance textiles. JTATM. 2004;4(1):1-7.

Ahmad U, Ahmad Z, Khan AA, Akhtar J, Singh SP, Ahmad FJ. Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res. 2018;68(10):545-52.

Raj S, Jose S, Sumod US, Sabitha M. Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci. 2012;4(3):186-93.

Rigano L, Lionetti N. Nanobiomaterials in Galenic formulations and cosmetics. In: Grumezescu AM, editor. Nanobiomaterials in Galenic formulations and cosmetics. Norwich, NY: William Andrew Publishing. 2016;121-48.

L’Oreal. What are nanoparticles? Available online [cited Apr 14 2020]. Available:

Shiseido. What is Nano particles? Available online [cited Apr 14 2020]. Available from:

Singh P, Nanda A. Nanotechnology in cosmetics: A boon or bane? Toxicol Environ Chem. 2012;94(8):1467-79.

Opportunities for nanomaterials in sporting applications – 2008-2013: trend, forecast and competitive analysis. Research and Markets.

Cha YH, Lee KH, Ryu HJ, Joo IW, Seo A, Kim DH, et al. Ankle-foot orthosis made by 3D printing technique and automated design software. Appl Bionics Biomech. 2017;2017:9610468.

Fytianos G, Rahdar A, Kyzas GZ. Nanomaterials in cosmetics: recent updates. Nanomaterials (Basel). 2020;10(5):979.

Wang LB, Chen W, Xu D, Shim BS, Zhu Y, Sun F, et al. Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Lett. 2009;9(12):4147-52_4152.

Kang K, Meng YS, Bréger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006;311(5763):977-80_980.

Chan CK, Zhang XF, Cui Y. High capacity li ion battery anodes using Ge nanowires. Nano Lett. 2008;8(1):307-9_309.

Huang R, Fan X, Shen W, Zhu J. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl Phys Lett. 2009;95(13): 133119.

Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C. Water security in one blue planet: twenty-first century policy challenges for science. Philos Trans A Math Phys Eng Sci. 2013;371(2002):20120406.

Levin RB, Epstein PR, Ford TE, Harrington W, Olson E, Reichard EG. US drinking water challenges in the twenty-first century. Environ Health Perspect. 2002;110(43);Suppl 1_52:43-52.

Houtman CJ. Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. J Integr Environ Sci. 2010;7(4):271-95.

Chong MN, Jin B, Chow CWK, Saint C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010;44(10):2997-3027_3027.

Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ. 2011;409(19):3555-63_3563.

Karn B, Kuiken T, Otto M. Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environ Health Perspect. 2009;117(12):1823_1831.

Fu FL, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater. 2014;267 (194)_205:194-205.

Ponder SM, Darab JG, Mallouk TE. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol. 2000;34(12):2564-9.

Crane RA, Scott TB. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211-212(112)_125: 112-25.

Tosco T, Petrangeli Papini M, Cruz Viggi C, Sethi R. Nanoscale zerovalent iron particles for groundwater remediation: A review. J Clean Prod. 2014;77;Suppl C:10-21.

Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H. Remediation of atrazine-contaminated soil and water by Nano zerovalent iron. Water Air Soil Pollut. 2008;192(1-4):349-59.

Li XG, Zhao Y, Xi B, Meng X, Gong B, Li R, et al. Decolorization of methyl Orange by a new clay-supported nanoscale zerovalent iron: Synergetic effect, efficiency optimization and mechanism. J Environ Sci China. 2017;52(8):17:8-17.

Masciangioli T, Zhang WX. Environmental technologies at the nanoscale. Environ Sci Technol. 2003;37(5):102a_108aa.

Thomas RT, Nair V, Sandhyarani N. TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: a mechanistic investigation. Colloids Surf A Physicochem Eng Aspects. 2013;422(1):1-9.

Konstantinou IK, Albanis TA. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Appl Catal B. 2003;42(4):319-35.

Chen Y, Crittenden JC, Hackney S, Sutter L, Hand DW. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Environ Sci Technol. 2005;39(5):1201-8_1208.

Keith DW. Why capture CO2 from the atmosphere? Science. 2009;325(5948):1654-5_1655.

White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW, Air & Waste Management Association. Separation and capture of CO2 from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. J Air Waste Manag Assoc. 2003;53(6):645-715_715.

Aaron D, Tsouris C. Separation of CO2 from flue gas: a review. Sep Sci Technol. 2005;40(1-3):321-48.

Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol. 2002;36(20):4467-75_4475.

Hsu SC, Lu C, Su F, Zeng W, Chen W. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chem Eng Sci. 2010;65(4):1354-61.

Khan J, Arsalan MH. Solar power technologies for sustainable electricity generation-a review. Renew Sustain Energy Rev. 2016;55(414):414-25.

Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges. J Phys Chem Lett. 2010;1(18): 2655-61.

Ni M, Leung MKH, Leung DYC, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev. 2007;11(3):401-25.

Nazari A, Shadi R. ZrO2 nanoparticles effects on split tensile strength of self compacting concrete. Mater Res. 2010;13:485-95.

Kumar A, Vemula PK, Ajayan PM, John G. Silver nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7(3):236-41.

Małgorzata L. Carbon nanotubes influence on the compressive strength of cement composites. Tech Trans Civ Eng. 2014;1:5-11.

Becher PF. Microstructural design of toughened ceramics. J Am Ceram Soc. 1991;74(2):255-69.

Song GB, Gu HC, Mo YL. Smart aggregates: multifunctional sensors for concrete structures-A tutorial and a review. Smart Mater Struct. 2008;17:1-17.

Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, et al. Single-wall carbon nanotube based proton exchange membrane assembly for hydrogen fuel cells. Langmuir. 2005;21(18):8487-94.

Hussain S, Sastry K. Study of strength properties of concrete by using micro-silica and nanosilica. Int J Res Eng Technol. 2014;3:103-8.

Rana AK, Rana SB, Kumari A, Kiran V. Significance of nanotechnology in construction engineering. Int J Recent Trends Eng. 2009;1:46-8.

Serpone N, Pelizzetti E. Photocatalysis: fundamentals and applications. New York: Wiley; 1989.

Mohseni E, Ranjbar MM, Tsavdaridis KD. Durability properties of high-performance concrete incorporating Nano-TiO2 and fly ash. Am J Eng Appl Sci. 2015;8(4):519-26.

Nazari A, Rafieipour MH, Shadi R. The Effects of CuO Nanoparticles on properties of self-compacting concrete with GGBFS as Binder. Mater Res. 2011;14:307-16.

Yazdi NA, Arefi MR, Mollaahmadi E, Nejand BA. To study the effect of adding Fe2O3 nanoparticles on the morphology properties and microstructure of cement mortar. Life Sci J. 2011;8:550-4.

Nazari A, Riahi S. Optimization mechanical properties of Cr2O3 nanoparticles binary blended cementitious composite. J Compos Mater. 2011;45(8):943-8.

Prabhu P, Patravale V. The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol. 2012;8(6):859-82.

Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188(6):759-68.

Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 2010; 7:3.

Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9(2):E128-47.

Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells. 2011;31(4):295-302.

De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. doi: 10.2147/ijn.s596, PMID 18686775.

Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16.

Ma J, Wong H, Kong LB, Peng KW. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology. 2003;14(6):619-23.

Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology. 1990; 175(2):489-93.

Nam JM, Thaxton CS, Mirkin CA. Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301(5641):1884-6.

Choksi AN, Poonawalla T, Wilkerson MG. Nanoparticles: A closer look at their dermal effects. J Drugs Dermatol. 2010;9(5):475-81.

Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whitman LJ, et al. The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron. 2000;14(10-11):805-13.

Mahtab R, Rogers JP, Murphy CJ. Protein-sized quantum dot luminescence can distinguish between ”straight”, ”bent”, and ”kinked” oligonucleotides. J Am Chem Soc. 1995;117(35):9099-100.

Shinkai M, Yanase M, Suzuki M, Hiroyuki Honda, Wakabayashi T, Yoshida J et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater. 1999;194(1-3):176 -84.

Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater. 2002;14(12):882-5.

Wang S, Mamedova N, Kotov NA, Chen W, Studer J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2002;2(8):817-22.

Molday RS, MacKenzie D. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods. 1982;52(3):353-67.