Full Article - PDF

Published: 2020-03-10

Page: 14-27


Department of Mathematics, Faculty of Science, Aswan University, Egypt.

H. N. ALAA *

Department of Mathematics, Faculty of Science, Aswan University, Egypt.


Faculty of Fine Arts-Luxor, Luxor University, Egypt.

*Author to whom correspondence should be addressed.


Finite data sets are considered as metric spaces with defining the dissimilarity measure between the data points of them. In this work, we describe the persistent homology flowchart (PHF) in detail and study the persistence barcodes of Vietoris-Rips. PHF starts with a finite metric space and ends with a persistence diagram encoding features of the input data set. We compute  and -dimensional persistence diagrams and barcodes of the -point metric space, . Finally, as an application on PH flowchart, we interpret the single linkage clustering of    via -dimensional persistence diagram , we then deduce that persistent homology generalizes clustering.

Keywords: Persistent homology, metric spaces, clustering and diagrams.

How to Cite

RASHAD, A. M., ALAA, H. N., & MOHAMMED, M. S. (2020). APPLICATIONS OF PERSISTENT HOMOLOGY IN FINITE METRIC SPACES AND CLUSTERING. Asian Journal of Mathematics and Computer Research, 27(1), 14–27. Retrieved from


Download data is not yet available.


Jardine N, Sibson R. Mathematical taxonomy. Wiley Series in Probability and Mathematical Statistiscs. John Wiley & Sons; 1972.

Lax P. Functional analysis. John Wiley & Sons, Inc., New York; 2002.

Hertz T. Learning distance functions: Algorithms and applications. Ph. D. Thesis. The Hebrew University of Jerusalem; 2006.

Mémoli F, Singhal K. A primer on persistent homology of finite metric spaces. arXiv:1905.13400v1 [math. AT]; 2019.

Carlsson G, Mémoli F. Classifying clustering schemes. Foundations of Computational Mathematics. 2013;13(2):221-252.

Jacobson N. Basic Algebra II: Second Edition. Dover Books on Mathematics. Dover Publications; 2012.

Spivak DI. Category theory for the sciences. The MIT Press. MIT Press; 2014.

Carlsson G, Mémoli F. Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn. Res. 2010;11:1425-1470.

Munkres JR. Elements of algebraic topology. Avalon Publishing; 1996.

Carlsson G. Topology and data. Bulletin of the American Mathematical Society. 2009;46(2):255-308.

Edelsbrunner H, Harer J. Computational topology – an introduction. American Mathematical Society; 2010.

Edelsbrunner H. A short course in computational geometry and topology. Springer Briefs in Applied Sciences and Technology. Springer, Cham; 2014.

Ghrist RW. Elementary applied topology, volume 1. Createspace Seattle; 2014.

Oudot S. Persistence theory: From quiver representations to data analysis, volume 209 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI; 2015.

Carlsson G. Topological pattern recognition for point cloud data. Acta Numerica. 2014;23:289368.

Crawley-Boevey W. Decomposition of pointwise finite dimensional persistence modules; 2012.