UPPER ESTIMATES OF THE INITIAL COEFFICIENTS OF ANALYTIC FUNCTIONS BELONGING TO A CERTAIN CLASS OF BI-UNIVALENT FUNCTIONS

L. FATUNSIN MODUPE *

Department of Mathematics Programmes, National Mathematical Centre, Abuja, Nigeria.

O. OPOOLA TIMOTHY

Department of Mathematics, Faculty of physical science, University of Ilorin, Kwara-State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

In this paper, Opoola differential operator, which is a generalization of both Salagean differential operator and Al-Oboudi differential operator is used to define a new subclass of analytic and bi-univalent functions by using quasi-subordination principle. The upper estimates for the first two initial coefficients of functions in the new subclass defined are obtained by means of Ma-Minda functions.

Keywords: Analytic and bi-univalent functions, opoola differential operator, coefficient bounds, Ma-Minda functions


How to Cite

MODUPE, L. F., & TIMOTHY, O. O. (2022). UPPER ESTIMATES OF THE INITIAL COEFFICIENTS OF ANALYTIC FUNCTIONS BELONGING TO A CERTAIN CLASS OF BI-UNIVALENT FUNCTIONS. Asian Journal of Mathematics and Computer Research, 29(2), 1–6. https://doi.org/10.56557/ajomcor/2022/v29i27835

Downloads

Download data is not yet available.

References

Duren, PL. Univalent Functions. Springer, New York, NY. USA; 1983.

Koebe P. “Uber die Uniformisierung beliebiger analytischer Kurven”. Math.Phys. Kl. 1907;191-210:633-669.

Bernhard R. Grundlagen fur eine allgemeine Theorie der Functionen einer Veranderlichen complexen Grosse, Gottingen; 1851.

Miller SS, Mocanu PT. Differential Subordination. Theory and Applications, Marcel-Dekker Inc., New York; 2000.

Ramachandran C, Kavitha D. Coefficient estimates for a subclass of bi-univalent functions defined by Salagean operator using quasi-subordination. Appplied mathematical sciences. 2017;11(35):1725-1732.

Brannan, DA, Taha TS. On some classes of bi-univalent functions. Studia Univ.Babes,Bolyai Math., 1986;31(2):70-77.

Moh'd MH, Darus M. Fekete-Szego problems for quasi-subordination classes. Abstract and Applied Analysis. 2012;2012(Article ID):192956.

Cağlar M, Orhan H, Yagmur N. Coefficient bounds for new subclasses of bi-univalent functions, Filomat. 2013;27.

Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Classs. Anal., 2013;2:49-60.

Obaid A. Estimates of initial coefficient for certain subclasses of bi-univalent functions involving quasi-subordination. Journal of Nonlinear science and Applications. 2017;10:1004-1011.

Nehari Z. Conformal Mapping. Dover, New York, NY, USA. 1975. Reprinting of the 1952 edition.

Ma W, Minda CD. A unified treatment of some special classes of functions. Proceedings of the Conference on complex analysis; 1994.

Opoola TO. On a subclass of univalent functions defined by a generalized differential operator, International. Journal of Mathematical Analysis. 2017;11(18):869-876.

Available: https:doi.org/10.12988/ijma.2017.7252.

Salagean GS. Subclasses of Univalent Functions. Complex Analysis. Fifth Romanian Seminar, Lecture Notes in Mathematics. 1983; 1013: Springer,Berlin. 362-372.

Al-Oboudi, FM. On univalent functions defined by a generalized Salagean operator. Int.J. math.sci. 2004 ;(25-28):1429-143.

Fatunsin LM, Opoola TO. New results on subclasses of analytic functions defined by Opoola differential operator. Journal of Mathematical Science System. 2017;7:289-295.

DOI:10.17265/2159-5291/2017.10.003.

Oyekan EA, Swamy SR, Opoola TO. Rushewey derivative and a new generalized operator involving convolution. International Journal of Mathematics Trends and Technology. 67(1).

DOI:10.1445/22315373/IJMTT-v6711P513.