Application of Gegenbauer Wavelet Method on Initial Value Problem of Fractional Order Fitz Hugh-Nagumo Equation

PDF

Published: 2023-10-18

DOI: 10.56557/ajomcor/2023/v30i48417

Page: 83-101


Jie Yang *

School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, PR China.

Yue Zhou

School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, PR China.

*Author to whom correspondence should be addressed.


Abstract

This paper provides a detailed introduction to the fractional order differentials and the matrix operations of the Gegenbauer wavelet method for solving fractional order differential equations. By comparing the derived trigonometric fractional order differential form solution with the reconstructed Gegenbauer wavelet solution in exploring the initial value problem of the fractional order FitzHugh-Nagumo equation, this paper not only verifies the suitability of the defined fractional order differential form solution for numerical computations but also highlights the high accuracy of the Gegenbauer wavelet method in solving fractional order differential equations. Furthermore, by comparing the exact solution with the reconstructed solution using the Gegenbauer wavelet method, it is concluded that the synchronization rate between neurons in the fractional order FitzHugh-Nagumo model is faster than the corresponding integer-order synchronization rate.

Keywords: Fractional calculus, FitzHugh-Nagumo equation, Gegenbauer wavelet, Mittag-Leffler function


How to Cite

Yang, J., & Zhou, Y. (2023). Application of Gegenbauer Wavelet Method on Initial Value Problem of Fractional Order Fitz Hugh-Nagumo Equation. Asian Journal of Mathematics and Computer Research, 30(4), 83–101. https://doi.org/10.56557/ajomcor/2023/v30i48417

Downloads

Download data is not yet available.

References

Alqhtani M, Khader MM, Saad KM. Numerical Simulation for a High-Dimensional Chaotic Lorenz System Based on Gegenbauer Wavelet Polynomials, Math. 2023;11(2): 472.

Hilfer R. Applications of Fractional Calculus in Physics, World. Sci.; 2000.

Saghali S, Javidi M, Saei FD. Analytical Solution of a Fractional Differential Equation in the Theory of Viscoelastic Fluids, Int. J. Appl. Comput. Math., 2019;5:53.

Qiao Y, Wang X, Xu H. Numerical analysis for viscoelastic uid ow with dis-tributed=variable order time fractional Maxwell constitutive models, Appl. Math. Mech. - Engl. Ed., 2021;42:1771-1786.

Baleanu D, Josa AT. Fractional dynamics and control, New York: Springer Science & Business Media; 2012.

Podlubny I. Fractional Di erential Equations, Mathematics in Science and Engineering, New York: Academic Press; 1999.

Diethelm K. Generalized compound quadrature formulae for nite-part integrals, Ima. J. Numer. Anal., 1997;17(3): 479-493.

Xue D, Bai L. Fractional Calculus: Numerical Algorithms and Implementations, Beijing: Tsinghua University Press; 2023.

Jafari H, Youse SA, Firoozjaee MA. Application of legendre wavelets for solving fractional differential equations, Comput. Math. Appl., 2011;62(3):1038-1045.

Brezinski C, Draux A, Magnus AP. Polynomes Orthogonaux et Applications, Berlin: Springer-Verla; 1984.

Szego G. Orthogonal Polynomials, Rhode Island: American Mathematical Society; 1975.

Ferizovic D. On the L2-norm of Gegenbauer polynomials, Math. Sci. 2022;16:115-119.

Cohl H, Mackenzie C. Generalizations and specializations of generating functions for Jacobi, Gegenbauer, Chebyshev and Legendre polynomials with de nite integrals, Math.; 2013. Available:https://doi.org/10.48550/arXiv.1210.0039.

Gautschi W. Sub-range Jacobi polynomials, Numerical Algorithms. 2012;61:649-657.

Izadkhah MM, Saberi-Nadja J. Gegenbauer spectral method for time-fractional convection-diffusion equations with variable coeffcients, Math. Method. Appl. Sci., 2015;38(15):3183-3194.

ur Rehman M, Saeed U. Gegenbauer wavelets operational matrix method for fractional differential equations, J. Korean Math. Soc. 2015;52(5):1069-1096.

Saeed U, ur Rehman M, Javid K. Fractional gegenbauer wavelets operational matrix method for solving nonlinear fractional differential equations, Math. Sci. 2021;15:83-97.

ur Rehman M, Khan RA. The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear. Sci., 2011;16(11): 4163-4173.

Razzaghi M, Yousefi S. The Legendre wavelets operational matrix of integration, Int. J. Syst. Sci. 2001;32(4):495-502.

Usman M, Hamid M, Ul Haq R. An efficient algorithm based on Gegenbauer wavelets for the solutions of variable-order fractional differential equations, Eur. Phys. J. Plus., 2018;133:1-16.

Yang C, Hou J. Chebyshev wavelets method for solving Bratu's problem, BVP., 2013;142. Available:https://doi.org/10.1186/1687-2770-2013-142.

Bultheel A. Learning to swim in a sea of wavelets, Bull. Belg. Math. Soc., 1995;2(1):1-45.

Chang SG, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression, IEEE T. Image Process., 2000;9(9):1532-1546.

Shahni J, Singh R. Numerical simulation of Emden-Fowler integral equation with Green's function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods, Math. Comput. Simul., 2022;194:430-444.

Heydari MH, Razzaghi M. A hybrid method based on the Chebyshev cardinal functions=wavelets for time fractional coupled Klein-Gordon-Schrodinger equations, J. Comput. Appl. Math., 2023;427:115142.

Izhikevich EM, FitzHugh R. FitzHugh-Nagumo model, Scholarpedia. 2006;1(9):1349.

Guo B, Pu X, Huang F. Fractional partial differential equations and their numerical solutions, World Scientific; 2015.

Caputo M. Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. R. astr. Soc., 1967;13(5):529-539.

Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 2001;5(4): 230-237.

Dunkl CF, Xu Y. Orthogonal Polynomials of Several Variables, Cambridge University Press; 2014.

Debnath L, Shah FA. The Wavelet Transforms and Their Basic Properties, Wavelet Transforms and Their Applications, Birkhauser, Boston, MA.; 2015.

Andrews GE, Askey R, Roy R. Special Functions, Cambridge University Press; 1999.

Nangho MK. Generating Functions and Hypergeometric Representations of Classical Continuous Orthogonal Polynomials, Boston: Birkhauser; 2020.

Brauchart JS, Grabner PJ. Weighted L2-norms of Gegenbauer polynomials, Aequat. Math. 2021;741-762. Available:https://doi.org/10.48550/arXiv.2103.08303.

Frank WJ Olver, Daniel W. Lozier, Ronald F. Boisvert, NIST Handbook of Mathematical Functions, New York: Cambridge university press; 2010.

Chan CT, Mironov A, Morozov A. Orthogonal polynomials in mathematical physics, Rev. Math. Phys., 2018;30(06):1840005.

Sergey K. Orthogonal Polynomials and Continued Fractions From Euler's Point of View, New York: Cambridge University Press; 2008.

Srivastava HM, Shah FA, Abass R. An Application of the Gegenbauer Wavelet Method for the Numerical Solution of the Fractional Bagley-Torvik Equation, Russ. J. Math. Phys., 2019;26(1): 77-93.

Maleknejad K, Shahrezaee M, Khatami H. Numerical solution of integral equations system of the second kind by block-pulse functions, Appl. Math. Comput., 2005;166(1):15-24.

Wang, Chi-Hsu. On the generalization of block pulse operational matrices for fractional and operational calculus, J. Franklin Inst. 1983;315(2): 91-102.

Kilicman A, Zhour Z. Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 2007;187(1): 250-265.

Debnath L, Shah FA. Wavelet transforms and their applications, Boston: Birkhauser; 2002.