Main Article Content



Few studies have examined the impact of the effect of organic amendments on indigenous arbuscular mycorrhizal fungi (AMF) and okra growth. Our greenhouse experiment investigated the effect of compost or biochar amendments, and their combination, on AMF colonization of okra roots inoculated or not with indigenous AMF consortium inoculant using a completely randomized block design. The results showed that the inoculation of plant with indigenous AMF and the application of both compost and biochar significantly increased the colonization frequency and intensity up to 94% and 45.9%, respectively. The plant height and stem diameter were improved and reached 68.5 cm and 10.2 mm, respectively for treatment combining AMF inoculation, compost, and biochar application, against 21.5 cm and 3.5 mm, respectively for control. Fresh and dry weight of roots reached 38.7 and 28.03 g/plant, respectively for plants amended with biochar. Plants inoculated with AMF and amended with both compost and biochar showed fresh and dry weights of 30.5 and 23.3 g/plant. The highest okra yields were recorded with the treatment combining the AMF inoculation and compost application, followed by the treatment combining the AMF inoculation, compost, and biochar application. Therefore, these synergies between compost, biochar, and AMF may help farmers to increase the colonization of indigenous AMF strains in okra roots and consequently their abundance in the soil and to improve okra growth and yield.

Arbuscular mycorrhizal fungi, biochar, compost, okra yield, plant growth

Article Details

How to Cite
HILALI, R. E., REHALI, M., OU-ZINE, M., KINANY, S. E., OUAHMANE, L., & BOUAMRI, R. (2022). INTERACTIVE IMPACT OF COMPOST AND BIOCHAR ON INDIGENOUS ARBUSCULAR MYCORRHIZAL FUNGI AND OKRA (Abelmoschus esculentum L.) PRODUCTION. Asian Journal of Plant and Soil Sciences, 7(1), 33-42. Retrieved from
Original Research Article


Choukr-Allah R. Use and management of saline water for irrigation in the Near East and North Africa (NENA) Region. In Future of Sustainable Agriculture in Saline Environments. 2021; 51-70. CRC Press.

Gemede HF, Haki GD, Beyene F, Rakshit SK, Woldegiorgis AZ. Indigenous Ethiopian okra (Abelmoschus esculentus) mucilage: A novel ingredient with functional and antioxidant properties. Food Science & Nutrition. 2018; 6(3):563-571. DOI:

Ofori J, Tortoe C, Agbenorhevi JK. Physicochemical and functional properties of dried okra (Abelmoschus esculentus L.) seed flour. Food Science & Nutrition. 2020 ;8(8): 4291-4296. DOI:

Abdellaoui S, Aissami AE, Benkhemmar O, Arahou M, Touhami AO, Douira A. Parasitic and pathogenic effects of fuarium oxysporum f. Sp. Albedinis isolates on okra and collard plants. Plant cell biotechnology and molecular biology. 2020 ;21(5-6):16-23. Available:

Graham JO, Agbenorhevi JK, Kpodo FM. Total phenol content and antioxidant activity of okra seeds from different genotypes. American Journal of Food and Nutrition. 2017);5(3):90-94. DOI:10.12691/ajfn-5-3-2

Liu Y, Ye Y, Hu X, Wang J. Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra. Carbohydrate Polymers. 2021;265:118081. DOI:

El hafyani M, Essahlaoui A, El Baghdadi M, Teodoro AC, Mohajane M, El Hmaidi A, El Ouali A. Modeling and mapping of soil salinity in Tafilalet plain (Morocco). Arabian Journal of Geosciences. 2019;12(2). DOI:

Ait-El-Mokhtar M, Laouane RB, Anli M, Boutasknit A, Wahbi S, Meddich A. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae. 2019;253: 429-438. DOI:

El Hilali R, Bouamri R, Crozilhac P, Calonne M, Symanczik S, Ouahmane L, Declerck S. In vitro colonization of date palm plants by Rhizophagus irregularis during the rooting stage. Symbiosis. 2021;84(1):83-89. DOI:

Voets, L, Dupré de Boulois, H, Renard, L, Strullu, D. G, & Declerck, S. (2005). Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiology letters, 248(1), 111-118.

Bagyaraj DJ. Arbuscular mycorrhizal fungi and biological control of soil-borne plant pathogens. Kavaka. 2018;51:1-6.

Olowe OM, Olawuyi OJ, Sobowale AA, Odebode AC. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L.(Maize). Current Plant Biology. 2018;15:30-37. DOI:

Singh G, Pankaj U, Chand S, Verma RK. Arbuscular mycorrhizal fungi-assisted phytoextraction of toxic metals by Zea mays L. from tannery sludge. Soil and Sediment Contamination: An International Journal. 2019;28(8) :729-746. DOI :

Spagnoletti FN, Cornero M, Chiocchio V, Lavado RS, Roberts IN. Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology. 2020; 156(3):839-849. DOI:

Chenchouni H, Mekahlia MN, Beddiar A. Effect of inoculation with native and commercial arbuscular mycorrhizal fungi on growth and mycorrhizal colonization of olive (Olea europaea L.). Scientia Horticulturae. 2020;261:108969. DOI:

Galvez L, Douds DD, Drinkwater LE, Wagoner P. Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant and Soil. 2001;228(2):299-308. DOI:

Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza. 2006;16(3):159-166. DOI:

Lahdachi FZ, Bouamri R, Nassiri L, Ibijbijen J. Rock phosphate and arbuscular mycorrhiza effects on growth and mineral nutrition of Acacia gummifera Wild. International Journal of Innovation and Applied Studies. 2018; 23(4):384-389.

Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A. Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. The New Phytologist. 2000;146(1):155-161.

El Kinany S, Achbani E, Faggroud M, Ouahmane L, El Hilali R, Haggoud A, Bouamri R. Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date palm cv. Feggouss. Journal of the Saudi Society of Agricultural Sciences. 2019;18(4):411-417. DOI:

Solaiman ZM, Shafi MI, Beamont E, Anawar HM. Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture. 2020;10(10):480. DOI:

Burrell LD, Zehetner F, Rampazzo N, Wimmer B, Soja G. Long-term effects of biochar on soil physical properties. Geoderma. 2016;282:96-102. DOI:

Mohamed OZ, Yassine B, El Hassan A, Abdellatif H, Rachid B. Evaluation of compost quality and bioprotection potential against Fusarium wilt of date palm. Waste Management. 2020;113:12-19. DOI:

Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici. Frontiers in Plant Science. 2015; 6, 529. DOI:

Zhuo F, Zhang XF, Lei LL, Yan TX, Lu RR, Hu ZH, Jing YX. The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. International Journal of Phytoremediation. 2020;22(10) :1009-1018. DOI :

Agegnehu G, Bass AM, Nelson PN, Bird MI. Benefits of biochar, compost, and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment. 2016;543:295-306. DOI:

Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y, Chen A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment. 2020;701:134751.

Gemma JN, Koske RE. Seasonal variation in spore abundance and dormancy of Gigaspora gigantea and in mycorrhizal inoculum potential of a dune soil. Mycologia. 1988;80(2) :211-216. DOI :

Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (Eds.) Physiological and genetical aspects of mycorrhizae. INRA, Paris. 1986; 217 – 221. Available: bbceipm/Mychintec/Mycocalc-prg/download.html.

Al-Shamma S, Backhouse D, Cowie A, Wilson SC. Mycorrhiza and biochar for remediation and plant production in soils polluted with Arsenic; 2017.

Müller LM, Flokova K, Schnabel E, Sun X, Fei Z, Frugoli J, Bouwmeester HJ, Harrison MJ. A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants. 2019;5(9):933-939. DOI:

Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biology and Fertility of Soils. 2016;52(1):15-29. DOI:

Akpinar C, Demirbas A, Ortas I. the effect of different compost compositions on arbuscular mycorrhizal colonization and nutrients concentration of leek (allium Porrum L.) Plant. Communications in Soil Science and Plant Analysis. 2019 ;50(18):2309-2320. DOI:

Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Applied Soil Ecology. 2010; 46(3):450-456. DOI:

Ohsowski BM, Dunfield K, Klironomos JN, Hart MM. Plant response to biochar, compost, and mycorrhizal fungal amendments in post‐mine sandpits. Restoration Ecology. 2018;26(1):63-72. DOI:

Elshaikh NA, Zhipeng L, Dongli S, Timm LC. Increasing the okra salt threshold value with biochar amendments. Journal of Plant Interactions. 2018;13(1) :51-63. DOI :

Smith FA, Grace EJ, Smith SE. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist. 2009;182(2):347-358. DOI:

Castillo C, Sotomayor L, Ortiz C, Leonelli G, Borie F, Rubio R. Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annuum L.). Chilean J. Agric. Res. 2009;69(1):79-87.

Prendergast‐Miller MT, Duvall M, Sohi SP. Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science. 2014;65(1):173-185. DOI:

Batool A, Taj S, Rashid A, Khalid A, Qadeer S, Saleem AR, Ghufran MA. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science. 2015;6:733. DOI:

Jabborova D, Annapurna K, Al-Sadi AM, Alharbi SA, Datta R, Zuan ATK. Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences. 2021;28(10):5490-5499. DOI;

Quilty JR, Cattle SR. Use and understanding of organic amendments in Australian agriculture: a review. Soil Research. 2011;49(1):1 26. DOI:

Lynch JP, Brown KM. Root strategies for phosphorus acquisition. In The ecophysiology of plant-phosphorus interactions. 2008;83-116. Springer, Dordrecht. DOI: 10.1007/978-1-4020-8435-5_5

Cavagnaro TR. Biologically regulated nutrient supply systems: compost and arbuscular mycorrhizas—a review. Advances in Agronomy. 2015;129:293-321. DOI:

Smith SE, Read DJ. Mycorrhizal symbiosis. Academic Press; 2010.