Pterocarpus santalinoides and Pterocarpus mildbraedii Twigs Extracts Induced Alterations of Blood Glucose, Triglyceride and Cholesterol Concentrations of Oryctolagus cuniculus

Full Article - PDF

Published: 2023-02-15

Page: 15-31


Reginald Chibueze Ohiri *

Department of Biochemistry, Faculty of Science, University of Port Harcourt, P. M. B. 5323, East-West Road, Choba, Rivers State, Nigeria.

Charity Uchechi Ogunka-Nnoka

Department of Biochemistry, Faculty of Science, University of Port Harcourt, P. M. B. 5323, East-West Road, Choba, Rivers State, Nigeria.

Rotu, Avwarute Rotu

Department of Biochemistry, Faculty of Science, University of Port Harcourt, P. M. B. 5323, East-West Road, Choba, Rivers State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Background: Therapeutic potentials of plants are recognized through comprehensive research on the medicinal properties of their bioactive components. About 80% of people in developing countries depend on plants as alternative sources of medicine. This study investigates the bioactive components of Pterocarpus santalinoides and Pterocarpus mildbraedii twigs and their effect on blood glucose, triglyceride and cholesterol concentrations of Oryctolagus cuniculus

Materials and Methods: Fresh twigs of P. santaliniodes and P. mildbraedii were separately destalked, washed, dried and pulverized. The bioactive components extracted using dichloromethane as solvent were analyzed using GC-MS. The extracts were analyzed using a combined gas chromatograph model HP 6890 and mass spectrometer model 5973 (AgilentTech.) fitted with a capillary column HP-5 MS (5% phenylmethylsiloxane) 30.0 m x 250μm x 0.25μm with Helium as the carrier gas. The effect of the bioactive components on blood glucose, triglyceride and cholesterol concentrations were studied. The animals were acclimatise, feed with pellets ad libitum and treated with varying concentrations of P. santalinoides (groups C1, D1 and E1) and P. mildbraedii (groups C2, D2 and E2) twig extracts via oral intubation, while groups A and B were treated with0.0 mg/kg and 100 mg/kg of olive oil respectively. Blood glucose, triglyceride and cholesterol were determined from blood samples collected from the pinna vein of the animals using Multi Care Meter.

Results: Highest bioactive component in P. santalinoides and P. mildbraedii were apiol (44.974%) and hexadecane,2,6,10,14-tetramethyl- (51.668%). Glucose concentration was highest at day 3 in O. cuniculus treated with 150 mg per kg body weight of P. santalinoides extract with a value of 191.0 + 1.0 mg/dl. Triacylglyceride and Cholesterol concentrations were climaxed on days 0 and 15 in those treated with 150 and 200 mg/kg body weight of P. mildbraedii extracts, with values of 147.0 ± 7.0 mg/dl and 179.0 + 3.0 mg/dl respectively.

Conclusion: Extracts of P. santalinoides can be relevant in the management of hypoglycemia and low blood triglyceride, while maintaining a low cholesterol level. 

Keywords: Bioactive components, biochemical parameters, medicinal properties


How to Cite

Ohiri, R. C., Ogunka-Nnoka, C. U., & Rotu, R. A. (2023). Pterocarpus santalinoides and Pterocarpus mildbraedii Twigs Extracts Induced Alterations of Blood Glucose, Triglyceride and Cholesterol Concentrations of Oryctolagus cuniculus. Asian Journal of Research in Biology, 6(1), 15–31. Retrieved from https://ikprress.org/index.php/AJRiB/article/view/8144

Downloads

Download data is not yet available.

References

Okigbo RN, Eme UE, Ogbogu S. Biodiversity and conservation of medicinal and aromatic plants in Africa. Biotechnol. Mol. Biol. Rev. 2008;3(6), 127-134.
DOI: 10.5897/BMBR2008.0013.

Roskov YR, Bisby FA, Zarucchi JL, Schrire BD, White RJ. International Legume Database and Information Service (ILDIS) World Database of Legumes, version 10, ILDIS, Reading, United Kingdom; 2006.

Adesina SK. Studies on some Plants used as Anticonvulsants in Amerindian and African traditional medicine. Fitoterapia. 1982;53:147-162.

Otuechere CA, Farombi EO. Pterocarpus mildbraedii leaf extract ebbs propanil-induced oxidative and apoptotic damage in the liver of rats. Drug Chem. Toxicol. 2022;45(4):1476 - 1483.
DOI: 10.1080/01480545.2020.1842884.

Shorter E. Women's Bodies: A Social History of Women's Encounter with Health, Ill-Health, and Medicine. Transaction Publishers, New Brunswick, NJ. 1991;15-48.

Farag MA, Gad MZ. Omega-9 fatty acids: potential roles in inflammation and cancer management. J. Genet. Eng. Biotechnol. 2022;20(1):48.
DOI: 10.1186/s43141-022-00329-0.

Ohiri RC, Bassey EE. Fermentation induced changes in volatile components of African oil bean (Pentaclethra macrophylla Benth) seeds. Food Sci Nutr. 2017; 5(4):948-955.
DOI: 10.1002/fsn3.481.

Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escribá PV. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. 2008;105(37):13811-13816.
DOI: 10.1073/pnas.0807500105.

Yudkin JS. In-flammation, obesity, and the metabolic syndrome. Hormone Metabol. Res. 2007;39:707-709.
DOI: 10.1055/s-2007-985898.

Haug A, Høstmark AT, Harstad OM. Bovine milk in human nutrition – a review. Lipids Health Dis. 2007;6: 25.
DOI: 10.1186/1476-511X-6-25.

Peters K, Walters C, Moldowan J. Organic chemistry. In The Biomarker Guide. Cambridge University Press, Cambridge England. 2004;18-44.
DOI:10.1017/CBO9780511524868.004.

Rontani J, Volkman JK. Phytol degradation products as biogeochemical tracers in aquatic environments. Organic Geochem. 2003;34(1):1–35.
DOI: 10.1016/S0146-6380(02)00185-7

Rontani JF, Bonin P. Production of pristane and phytane in the marine environment: role of prokaryotes. Res. Microbiol. 2011;162(9):923-33.
DOI: 10.1016/j.resmic.2011.01.012.

Didyk BM, Simoneit BRT, Brassell SC, Eglinton G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature. 1978;272:216–222.
DOI:10.1038/272216a0.

Funaro CF, Böröczky K, Vargo EL, Schal C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. U S A. 2018;115(15):3888-3893.
DOI: 10.1073/pnas.1721419115.

Seenivasagan T, Sharma KR, Sekhar K, Ganesan K, Prakash S, Vijayaraghavan R. Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res. 2009;104(4):827-833.
DOI: 10.1007/s00436-008-1263-2.

Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK. Heneicosane - A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Indust. Crops Products, 2020;154:112748.
DOI: 10.1016/j.indcrop.2020.112748

Balamurugan R, Stalin A, Ignacimuthu S. Molecular docking of γ-sitosterol with some targets related to diabetes. Eur. J. Med. Chem. 2012;47(1):38-43.
DOI: 10.1016/j.ejmech.2011.10.007.

Balamurugan R, Duraipandiyan V, Ignacimuthu S. Antidiabetic activity of γ-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. Eur. J. Pharmacol. 2011;667(13):410-418.
DOI: 10.1016/j.ejphar.2011.05.025.

Aja PM, Ani OG, Offor CE, Orji OU, Alum EU. Evaluation of anti-diabetic effect and liver enzymes activity of ethanol extract of Pterocarpus santalinoides in alloxan induced diabetic albino rats. Global J. Biotechnol. Biochem. 2015;10(2):77-83.
DOI: 10.5829/idosi.gjbb.2015.10.02.93128.

Okwuosa CN, Unekwe PC, Achukwu PU, Udeani TK. C, Ogidi, U. H. Glucose and triglyceride lowering activity of Pterocarpus santaniloides leaf extracts against dexamethasone induced hyperlipidemia and insulin resistance in rats. Afr. J. Biotechnol. 2011;10(46):9415 - 9420.
DOI: 10.5897/AJB10.451

Demonty I, Ras RT, Van der Knaap HC, Meijer L, Zock PL, Geleijnse JM, Trautwein EA. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: a pooled analysis of 12 randomised controlled trials. Eur. J. Nutr., 2013;52(1):153-160.
DOI: 10.1007/s00394-011-0297-x

Rideout TC, Marinangeli CPF, Harding SV. Triglyceride-lowering response to plant sterol and stanol consumption. J. AOAC Int., 2015;98(3):707-715.
DOI: 10.5740/jaoacint.SGERideout.

Kurushima H, Hayashi K, Toyota Y, Kambe M, Kajiyama G. Comparison of hypocholesterolemic effects induced by dietary linoleic acid and oleic acid in hamsters. Atherosclerosis. 1995;114(2): 213 - 221.
DOI: 10.1016/0021-9150(94)05486-3.

Ruíz-Gutiérrez V, Muriana FJ, Guerrero A, Cert AM, Villar J. Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources. J. Hypertens. 1996; 14(12):1483-1490.
DOI: 10.1097/00004872-199612000-00016.

Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21(4):225 -245.
DOI: 10.1038/s41580-019-0190-7.

Luo Q, Li Z, Huang X, Yan J, Zhang S, Cai YZ. Lycium barbarum polysaccharides: Protective effects against heat-induced damage of rat testes and H2O2-induced DNA damage in mouse testicular cells and beneficial effect on sexual behavior and reproductive function of hemicastrated rats. Life Sci., 2006;79(7):613-621.
DOI: 10.1016/j.lfs.2006.02.012.

Craig M, Yarrarapu SNS, Dimri M. Biochemistry, Cholesterol. [Updated 2022 Aug 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.

Chandler RF, Hooper SN, Ismail HA. Antihypercholesterolemic studies with sterols: beta-sitosterol and stigmasterol. J. Pharm. Sci. 1979;68(2):245-247.
DOI: 10.1002/jps.2600680235.