ASYMMETRIC TWO-DIMENSIONAL SOLITON-LIKE BEHAVIOR FOR A BOSE-EINSTEIN CONDENSATE IN A HARMONIC TRAP

Full Article - PDF

Published: 2020-09-12

Page: 31-35


YUQI PAN

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

GUOJUN GAO

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

CHEN CHEN

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

JIYUAN GUO *

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

YING WANG *

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China.

*Author to whom correspondence should be addressed.


Abstract

The work conducted in this study is based on the two-dimensional nonlinear Schrodinger equation, which explored asymmetric soliton-like behavior in two-dimensional Bose-Einstein condensate trapped in external harmonic potential. Using the modified variational method, we derived the dynamic
evolution behavior of soliton-like breathing mode with asymmetric features. Our theoretical results can be used as a guide for further experimental research of asymmetric soliton-like behavior in a two-dimensional Bose-Einstein condensate.

Keywords: Asymmetric soliton, Bose-Einstein Condensate, Variational Method.


How to Cite

PAN, Y., GAO, G., CHEN, C., GUO, J., & WANG, Y. (2020). ASYMMETRIC TWO-DIMENSIONAL SOLITON-LIKE BEHAVIOR FOR A BOSE-EINSTEIN CONDENSATE IN A HARMONIC TRAP. Journal of Applied Physical Science International, 12(1), 31–35. Retrieved from https://ikprress.org/index.php/JAPSI/article/view/5424

Downloads

Download data is not yet available.

References

Moinuddin ASM, Alam MS, Talukder MR. Nonlinear interaction phenomenon of dust acoustic solitary and shock waves in dusty plasma[J]. Contrib. Plasm. Phys. 2020;e201900124.

Li H, Chen D, Zhang H, Wu C, Wang X. Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing. Appl.Energy. 2017;185:244-253.

Rao LS, Thirmal C, Rao PR. Dielectric dispersion, linear and nonlinear optical properties of Li 2 OCWO 3 CB 2 O 3 : V 2 O 5 glasses[J]. Journal of Advanced Dielectrics. 2020;2050006.

Wang Y, Yang Y, He SQ, Wang W. Dynamic evolution of vortex solitons for coupled Bose-Einstein condensates in harmonic potential trap. AIP Advances. 2017;7:105209.

Shen M, Wang Q, Shi J, Chen Y, Wang X. Nonlocal incoherent white-light solitons in logarithmically nonlinear media[J]. Phys. Rev. E. 2005;72:026604.

Wyller J, Krolikowski W, Bang O, Rasmussen JJ. Generic features of modulational instability in nonlocal Kerr media. Phys. Rev. E. 2002;66:066615.

Skupin S, Saffman M, Krolikowski Skupin W. Nonlocal stabilization of nonlinear beams in a self-focusing atomic vapor[J].Phys. Rev. Lett. 2007;98:263902.

Kartashov YV, Zezyulin DA. Stable multiring and rotating solitons in twodimensional spin-orbit-coupled boseeinstein condensates with a radially periodic potential. Phy. Rev. Lett. 2019;122(12).

Li WT, Li JH, Li B. Soliton molecules, asymmetric solitons and some new types of hybrid solutions in (2+1)-dimensional SawadaCKotera model. Mod. Phys. Lett. B. 2020;34(13):473.

Liu H, He DH, Lou SY, He XT. Bright soliton solutions in degenerate femi gas near feshbach resonance. Chin. Phys. Lett.;26L:120308.

Zhang S, Ba JM, Sun YN, Dong L.A generalized (G’/G)-expansion method for the nonlinear schr? Dinger equation with variable coefficients. Naturforsch Z.2009;64a:691-696.

Fei JX, Zheng CL. Exact projective excitations of a generalized (3+1)-dimensional gross-pitaevskii system with varying parameters[J]. Chin. J. Phys.2013;51(2):200-208.

Trallero-Ginera C, Drake-Pereza JC,Lopez-Richardb V, Birmanc JL. Formal analytical solutions for the Gross-Pitaevskii equation[J]. Physica D. 2008;237:2342.

Xu B, Chen D, Gao X, Tomas C,Patelli E. Dynamic evolution of a hydraulicCmechanicalCelectric system with randomly fluctuating speed. Nonlinear.Dyn. 2018;92(4):1801-1813.

Saffman M, Walker T, Momer K. Quantum information with Rydberg atoms. Rev.Mod. Phys. 2010;82:2313.

Salasnich L, Malomed BA. Solitons and solitary vortices in ”pancake”-shaped Bose-Einstein condensates. Phys. Rev. A.;79:053620.

Saito, Hiroki , Ueda M. Dynamically stabilized bright solitons in a twodimensional bose-einstein condensate.Phy. Rev. Lett. 2003;90(4):040403.34Pan et al.; JAPSI, 12(1): 31-35, 2020

Fern JP, ndez, Mullin WJ. The twodimensional boseC einstein condensate.Low J.Temp. Phys. 2002;128(5-6):233-249.

Anoop PD, Thayyullathil RB. Effect of gravity on collective excitations of a quasi two-dimensional bose einstein condensate in an anharmonic trap. Commun. Theor.Phys. 2011;56(10):669-671.

Ahsan MAH, Kumar N. Rotating Bose gas with hard-core repulsion in a quasi-twodimensional harmonic trap: Vortices in Bose-Einstein condensates. Phys. Rev. A.2001;64(1):289-293.

Rychtarik D, Engeser B, Naegerl HC,Grimm R. Two-dimensional Bose-Einstein condensate in an optical surface trap. Phy.Rev. Lett. 2004;92(17):173003