DYNAMICAL EVOLUTION STUDY FOR ONE-DIMENSIONAL SYSTEM WITH CUBIC-QUINTIC NONLINEARITY

ZIHAN ZANG

School of Science, Jiangsu University of Science and Technology, Zhenjiang-212100, China.

JIAYU MA

School of Science, Jiangsu University of Science and Technology, Zhenjiang-212100, China.

CHENGHAO LI

School of Science, Jiangsu University of Science and Technology, Zhenjiang-212100, China.

QI ZHANG *

School of Science, Jiangsu University of Science and Technology, Zhenjiang-212100, China.

YING WANG

School of Science, Jiangsu University of Science and Technology, Zhenjiang-212100, China.

CHAOHUI LI

School of Science, Jiangsu University of Science and Technology, Zhenjiang-212100, China.

*Author to whom correspondence should be addressed.


Abstract

Nonlinear Schrodinger equation (NLSE) is a quantum system of nonlinear evolution, a kind of important equations, and in many areas have very important applications. Therefore, this type of equation models has important physical significance. People realized with GGPE describing BCS-BEC crossover, GGPE began to be utilized in people's research. When GPE and polytropic approximation are combined, the nonlinear term becomes generalized cubic-quintic nonlinearity. And the model becomes one-dimensional generalized cubic-quintic nonlinear Schrodinger equation (GCQ-NLSE). Many prior work deal with the special circumstances GCQ-NLSE the CQ-NLSE, and need to introduce additional integrability condition. In this work, we use the phase and amplitude coupling Transform combined with F-expansion method to solve the one-dimensional GCQ-NLSE. We obtained its soliton solutions without introducing any integrable condition. We apply the analytical solution obtained to our quantitative analysis of dynamic behavior of the model, whose results are dependent on the polytropic index which is related to the intensity of soliton strength, speed, system phonon velocity, these are depicted pictorially.

Keywords: Nonlinear schrodinger equation, cubic-quintic nonlinearity, soliton


How to Cite

ZANG, Z., MA, J., LI, C., ZHANG, Q., WANG, Y., & LI, C. (2022). DYNAMICAL EVOLUTION STUDY FOR ONE-DIMENSIONAL SYSTEM WITH CUBIC-QUINTIC NONLINEARITY. Journal of Applied Physical Science International, 14(3), 4–12. https://doi.org/10.56557/japsi/2022/v14i38057

Downloads

Download data is not yet available.

References

De Angelis C. Self-trapped propagation in the nonlinear cubic-quintic Schrodinger equation: A variational approach. IEEE J Quantum Electron. 1994;30(3):818-21. DOI: 10.1109/3.286174

Gatz S, Herrmann J. Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt Lett. 1992;17(7):484-6. DOI: 10.1364/ol.17.000484, PMID 19794533.

Dodd RK, Eilbeck JC, Gibbon JD, Morris HC. Solitons and nonlinear wave equations. New York: Academic Press; 1982.

Inouye S, Andrews MR, Stenger J, Miesner HJ, Stamper-Kurn DM, Ketterle W. Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances. Nature. 1998;392(6672):151-4. DOI: 10.1038/32354.

Abdullaev FKh, Gammal A, Tomio L, Frederico T. Braaten E, Hamme HW. Stability of trapped Bose-Einstein condensates. Phys Rev A. Three-body recombination into deep bound states in a Bose gas with large scattering length. 2001;63(4):043604. DOI: 10.1103/PhysRevA.63.043604

Kivshar Y, Agrawal GP. Optical solitons: From fibers to photonic crystals. San Diego: Academic Press; 2003.

van Saarloos W, Hohenberg PC. Pulses and fronts in the complex Ginzburg-Landau equation near a subcritical bifurcation. Phys Rev Lett. 1990;64(7):749-52. DOI: 10.1103/PhysRevLett.64.749, PMID 10042068.

Malomed BA, Nepomnyashchy AA. Kinks and solitons in the generalized Ginzburg-Landau equation. Phys Rev A. 1990;42(10):6009-14. DOI: 10.1103/physreva.42.6009, PMID 9903880.

Crasovan L-C, Malomed BA, Mihalache D. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation. Phys Rev E. 2000;63(1):016605. DOI: 10.1103/PhysRevE.63.016605

Scharf R, Bishop AR. Length-scale competition for the one-dimensional nonlinear Schrödinger equation with spatially periodic potentials. Phys Rev E. 1993;47(2):1375-83. DOI: 10.1103/PhysRevE.47.1375

Baizakov BB, Malomed BA, Salerno M. Multidimensional semi-gap solitons in a periodic potential. Eur Phys J D. 2006;38(2):367-74. DOI: 10.1140/epjd/e2006-00004-8

Berg-Sørensen K, Mølmer K. Bose-Einstein condensates in spatially periodic potentials. Phys Rev A. 1998;58(2):1480-4. DOI: 10.1103/PhysRevA.58.1480

Theocharis G, Frantzeskakis DJ, Carretero-González R, Kevrekidis PG, Malomed BA. Controlling the motion of dark solitons by means of periodic potentials: application to Bose-Einstein condensates in optical lattices. Phys Rev E. 2005;71(1):017602. DOI: 10.1103/PhysRevE.71.017602

Bronski JC, Carr LD, Deconinck B, Kutz JN. Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. Phys Rev Lett. 2001; 86(8):1402-5. DOI: 10.1103/PhysRevLett.86.1402, PMID 11290153.

Bronski JC, Carr LD, Deconinck B, Kutz JN, Promislow K. Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys Rev E. 2001;63(3):036612. DOI: 10.1103/PhysRevE.63.036612

Bronski JC, Carr LD, Carretero-González R, Deconinck B, Kutz JN, Promislow K. Stability of attractive Bose-Einstein condensates in a periodic potential. Phys Rev E. 2001; 64(5):056615. DOI: 10.1103/PhysRevE.64.056615

De Angelis C. S. Gatz and J. Herrmann, Opt. Lett. 17, 484 (1992). IEEE J Quantum Electron. 1994;30:818.

Inouye S, Andrews MR, Stenger J, Miesner HJ, Stamper-Kurn DM, Ketterle W. F.Kh. Abdullaev, Gammal A, Tomio L, Frederico T. Phys Rev A 63. 1998;392, 151:043604 (2001).

E. Braaten E, Hammer HW. Three-body recombination into deep bound states in a Bose gas with large scattering length. Phys Rev Lett. 2001;87(16):160407. DOI: 10.1103/PhysRevLett.87.160407, PMID 11690194.

Malomed BA. Soliton management in periodic systems. Berlin: Springer-Verlag; 2006.

Cornish SL, Claussen NR, Roberts JL, Cornell EA, Wieman CE. Stable 85Rb bose-einstein condensates with widely tunable interactions. Phys Rev Lett. 2000;85(9):1795-8. DOI: 10.1103/PhysRevLett.85.1795, PMID 10970616.

Pelinovsky DE, Kevrekidis PG, Frantzeskakis DJ. Averaging for solitons with nonlinearity management. Phys Rev Lett. 2003; 91(24):240201. DOI: 10.1103/PhysRevLett.91.240201, PMID 14683092.

Kevrekidis PG, Pelinovsky DE, Stefanov A. J Phys A. 2006;39:479.

Gabitov IR, Lushnikov PM. Centurion. Opt Lett. 2002;27(2):113-5. DOI: 10.1364/ol.27.000113, PMID 18007729.

Centurion M, Porter MA, Kevrekidis PG, Psaltis D. Nonlinearity management in optics: experiment, theory, and simulation. Phys Rev Lett. 2006;97(3):033903. DOI: 10.1103/PhysRevLett.97.033903, PMID 16907502.

Ilday FÖ, Wise FW. S.K. Adhikari, Phys. Rev. E 71. J Opt Soc Am B. 2002;19, 470:016611 (2005).

Zhang AX, Xue JK. Chin Phys Lett. 2008;25:39-41.

Liu H, He DH, Lou SY, He XT. Chin Phys Lett. 2009;26:120308.

Zhang S, Ba JM, Sun YN, Dong L. Z naturforsch 64a, 691-62009.

Fei JX, Zheng CL. Chin J Phys. 2013;51:200.

Trallero‐Ginera C, Drake‐Pereza JC, Lopez‐Richardb V, Birmanc JL. Phys D. 2008;237:2342.

Atre R, Panigrahi PK, Agarwal GS. Class of solitary wave solutions of the one‐dimensional Gross‐Pitaevskii equation. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;73(5 Pt 2):056611. DOI: 10.1103/PhysRevE.73.056611, PMID 16803061.

Inouye S, Andrews MR, Stenger J, Miesner H-J, Stamper-Kurn DM, Ketterle W. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature. 1998;392(6672):151-4. DOI: 10.1038/32354

Pitaevskii LP, Stringari S. Bose–einstein condensation. Oxford: Oxford University Press; 2003.

Mayteevarunyoo T, Malomed BA. Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice. Phys Rev A. 2006;74(3):033616. DOI: 10.1103/PhysRevA.74.033616

Poletti D, Alexander TJ, Ostrovskaya EA, Li B, Kivshar YS. Dynamics of matter-wave solitons in a ratchet potential. Phys Rev Lett. 2008;101(15):150403. DOI: 10.1103/PhysRevLett.101.150403, PMID 18999576.

Theocharis G, Frantzeskakis DJ, Carretero-Gonźalez R, Kevrekidis PG, Malomed BA. Controlling the motion of dark solitons by means of periodic potentials: Application to Bose-Einstein condensates in optical lattices. Phys Rev E. 2005;71(1):017602. DOI: 10.1103/PhysRevE.71.017602

Wang JD, Ji H, Liu PS. Vortex solitons in the semi-infinite gap of optically induced periodic lattices. Chin Phys B. 2013;22(4):044207. DOI: 10.1088/1674-1056/22/4/044207

Tie L, Xue JK. Tunneling dynamics of Bose— Einstein condensates with higher-order interactions in optical lattice. Chin Phys B. 2011;20(12):120311. DOI: 10.1088/1674-1056/20/12/120311

Choi DI, Niu Q. Bose-einstein condensates in an optical lattice. Phys Rev Lett. 1999; 82(10):2022-5. DOI: 10.1103/PhysRevLett.82.2022

Cristiani M, Morsch O, Müller JH, Ciampini D, Arimondo E. Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices: bloch oscillations, Landau-Zener tunneling, and mean-field effects. Phys Rev A. 2002;65(6):063612. DOI: 10.1103/PhysRevA.65.063612

Jona-Lasinio M, Morsch O, Cristiani M, Malossi N, Müller JH, Courtade E, et al. Asymmetric Landau-Zener tunneling in a periodic potential. Phys Rev Lett. 2003;91(23):230406. DOI: 10.1103/PhysRevLett.91.230406, PMID 14683168.

Jona-Lasinio M, Morsch O, Cristiani M, Malossi N, Müller JH, Courtade E, et al. Erratum: Asymmetric landau-zener tunneling in a periodic potential [Phys. Rev. Lett.PRLTAO0031-9007 91 , 230406 (2003)]. Phys Rev Lett. 2004;93(11):119903. DOI: 10.1103/PhysRevLett.93.119903

Kivshar YuS, Agrawal GP. Optical solitons: from fibers to photonic crystals. San Diego: Academic Press; 2003.

Malomed BA, Mihalache D, Wise F, Torner L. Spatiotemporal optical solitons. J Opt B: Quantum Semiclass Opt. 2005;7(5):R53-72. DOI: 10.1088/1464-4266/7/5/R02

Gross B, Manassah JT. Propagation of femtosecond pulses in focusing nonlinear Kerr planar waveguides. Opt Commun. 1996;129(1-2):143-51. DOI: 10.1016/0030-4018(96)00153-8

Bergé L. Wave collapse in physics: principles and applications to light and plasma waves. Phys Rep. 1998;303(5-6):259-370. DOI: 10.1016/S0370-1573(97)00092-6

Manassah JT, Baldeck PL, Alfano RR. Self-focusing, self-phase modulation, and diffraction in bulk homogeneous material. Opt Lett. 1988;13(12):1090-2. DOI: 10.1364/ol.13.001090, PMID 19746134. JT.

Manassah ibid. 1991;16:563.

Enns RH, Edmundson DE, Rangnekar SS, Kaplan AE. Optical switching between bistable soliton states: a theoretical review. Opt Quantum Electron. 1992;24(11):S1295-314. doi: 10.1007/BF00624674; R. McLeod.

McLeod R, Wagner K, Blair S. (3+1)-dimensional optical soliton dragging logic. Phys Rev A. 1995;52(4):3254-78. DOI: 10.1103/physreva.52.3254, PMID 9912613.

Manassah JT, Gross B, Laser Phys. 7. D.E. Edmundson. Phys Rev E. 1997;9;55:7636.

Kanashov AA, Rubenchik AM. Blagoeva. Physica. 1981;4D:122; A. B, S. G. Dinev AA. Dreischuh, and A. Naidenov, IEEE J. Quantum Electron. QE-27. 1991;2060.

Hayata K, Koshiba M. Multidimensional solitons in quadratic nonlinear media. Phys Rev Lett. 1993;71(20):3275-8. DOI: 10.1103/PhysRevLett.71.3275, PMID 10054932.

Malomed BA, Drummond P, He H, Anderson D, Berntson A, Lisak M. D.V. Skryabin and W.J. Firth, Opt. Commun.. Phys Rev E 56. 1997;148 (1998) 79:4725.

Mihalache D, Mazilu D, Malomed BA, Torner L, ibid. D. Mihalache, D. Mazilu. J Dorring and L. Torner, ibid. 159 (1999) 129. 1998;152:365.

Mihalache D, Mazilu D, Crasovan L-C, Torner L, Malomed BA, Lederer F. Three-dimensional walking spatiotemporal solitons in quadratic media. Phys Rev E. 2000;62(5):7340-7. DOI: 10.1103/PhysRevE.62.7340

Quiroga-Teixeiro ML, Berntson A, Michinel H. Internal dynamics of nonlinear beams in their ground states: short- and long-lived excitation. J Opt Soc Am B. 1999;16(10):1697. DOI: 10.1364/JOSAB.16.001697

Desyatnikov A, Maimistov A, Malomed B. Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity. Phys Rev E. 2000;61(3): 3107-13. DOI: 10.1103/PhysRevE.61.3107

De Angelis CD. Self-trapped propagation in the nonlinear cubic-quintic Schrodinger equation: A variational approach. IEEE J Quantum Electron. 1994;30(3):818-21. DOI: 10.1109/3.286174

Chin C, Kraemer T, Mark M, Herbig J, Waldburger P, Nägerl HC, et al.. Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys Rev Lett. 2005;94(12):123201. DOI: 10.1103/PhysRevLett.94.123201, PMID 15903917.

Abdullaev FK, Gammal A, Tomio L, Frederico T. Stability of trapped Bose-Einstein condensates. Phys Rev A. 2001;63(4). DOI: 10.1103/PhysRevA.63.043604.

Zhang W, Wright EM, Pu H, Meystre P. Phys Rev A. 2003;68:023605.

Kundu A. Exact solutions to higher-order nonlinear equations through gauge transformation. Phys D Nonlinear Phenom. 1987;25(1-3):399-406. DOI: 10.1016/0167-2789(87)90113-8

Clarkson PA. Dimensional reductions and exact solutions of a generalized nonlinear Schrodinger equation. Nonlinearity. 1992; 5(2):453-72. DOI: 10.1088/0951-7715/5/2/007

Pathria D, Morris JL. Exact solutions for a generalized nonlinear Schrödinger equation. Phys Scr. 1989;39(6):673-9. DOI: 10.1088/0031-8949/39/6/001

Wang M, Li X. Chaos soliton. Fract. 2005;24:1257.

Abdou MA. Chaos soliton. Fract. 2007;31:95.

Theocharis G, Rapti Z, Kevrekidis PG, Frantzeskakis DJ, Konotop VV. Modulational instability of Gross-Pitaevskii-type equations in 1 + 1 dimensions. Phys Rev A. 2003; 67(6):063610. DOI: 10.1103/PhysRevA.67.063610

Chen HJ, Li XF. Acta Physiol Sin. 2013;62(7):070302.

Kurita Y, Morinari T. Formation of a sonic horizon in isotropically expanding Bose-Einstein condensates. Phys Rev A. 2007; 76(5):053603. DOI: 10.1103/PhysRevA.76.053603

Fabbri A, Balbinot R. Ramp-up of hawking radiation in bose-einstein-condensate analog black holes. Phys Rev Lett. 2021; 126(11):111301. DOI: 10.1103/PhysRevLett.126.111301, PMID 33798364.

Sulem C, Sulem PL. The Nonlinear Schr¨ odinger Equation. New York: Springer; 1999.