The Study of Formation of Sonic Black Hole in One-Dimensional Bose-Einstein Condensate

PDF

Published: 2023-10-10

DOI: 10.56557/japsi/2023/v15i28411

Page: 43-50


Haoquan Xu

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Qingru Wang

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Ying Wang *

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Qi Zhang *

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Xiaomei Liu

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Chaohui Li

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

*Author to whom correspondence should be addressed.


Abstract

Based on the one-dimensional Gross-Pitaevskii equation (GPE) model, this work studies the formation of acoustic black holes in one-dimensional Bose Einstein condensate (BEC) in harmonic oscillator external potential, and extending the applicable scenarios of the GPE model for its specific application of simulating the formation conditions of acoustic black holes in one-dimensional systems. At the same time, We deepen the understanding of the analytical formula for determining the production conditions of acoustic black holes and the evolution formula of the radius of acoustic black holes.  

Keywords: BEC, acoustic black holes, GPE


How to Cite

Xu, H., Wang, Q., Wang, Y., Zhang, Q., Liu, X., & Li, C. (2023). The Study of Formation of Sonic Black Hole in One-Dimensional Bose-Einstein Condensate . Journal of Applied Physical Science International, 15(2), 43–50. https://doi.org/10.56557/japsi/2023/v15i28411

Downloads

Download data is not yet available.

References

Hengzhong Fang. Introduction of sonic black Hole[D] China Petroleum University; 2013.

Belic M, Wp Zhong. Dynamically compressed bright and dark solitons in highly anisotropic Bose-Einstein condensates. Phys. Rev. A. 2009;79: 023804.

Tanese D, Flayac H, Solnyshkov D, et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nat. Commun. 2013;4:1749.

Minzoni A, Smyth NF, Xu Z, et al. Stabilization of vortex-soliton beams in nematic liquid crystals. Phys. Rev. A. 2009;79:063808.

Modugno G. ULTRACOLD ATOMS A black-hole laser. Nat. Phys. 2014;10:793- 794.

Kurita Y, Morinari T. Formation of a sonic horizon in isotropically expanding Bose-Einstein condensates. Phys. Rev. A. 2007; 76:053603.

Zhang ZH, Xie MX. Study on Vibration Reduction Characteristics of Plate Structures with Arrayed and Combined Acoustic Black Holes. Noise and Vibration Control. 2023;043(003):53-59.

Qi W, Liang ZX, Zhang ZD. The stability condition and collective excitation of a trapped Bose-Einstein condensate with higher-order interactions. J. Phys. B: At, Mol. Opt. Phys. 2013;46:175301.

Wang Y, Zhou Y. Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method. AIP Adv. 2014;4:067131.

Wen W, Huang GX. Dynamics of dark solitons in superfluid Fermi gases in the BCS-BEC crossover. Phys. Rev. A. 2009; 79:023605.

Engels P, Atherton C. Stationary and nonstationary fluid flow of a Bose-Einstein condensate through a penetrable barrier. Phys. Rev. Lett. 2007;99:160405.

Ying YJ, Li HB. Dynamics of Bose-Einstein condensation in an asymmetric double-well potential. Acta Physica Sinica. 2023; 72(13):130303.

Lee C. Bose-Einstein condensation of particle-hole pairs in ultracold fermionic atoms trapped within optical lattices. Phys. Rev. Lett. 2004;93: 120406.

Qiu X, Wang LX. Dynamics of spin-tensor-momentum coupled Bose-Einstein condensates. Acta Physica Sinica. 2023; 72(18):180304.

Wang Y, Zhou SY. Sonic horizon dynamics of ultracold Fermi system under elongated harmonic potential. Chin. Phys. B. 2018;27:100312.

Modugno G. ULTRACOLD ATOMS a black-hole laser. Nat. Phys. 2014;10:793- 794.