Solitary Vortex Dynamics of 2D Bose-Einstein Condensates with Higher-Order Nonlinear Interactions
Journal of Applied Physical Science International, Volume 15, Issue 2,
Page 51-60
DOI:
10.56557/japsi/2023/v15i28412
Abstract
For study of Continuous matter waves in Bose-Einstein condensates in nonlinear and quantum atom optics, the two-dimensional Gross-Pitaevskii equation (GPE) is chosen as the reliable model for studying the dynamics of vortices in the framework of mean-field theory. In related problems in several recent studies showing that higher-order interrelationships are an indispensable component of the GPE even at the mean-field level, by numerically estimating the vortex dynamics variables. In this paper, derive the vortex soliton solutions using the variational method and investigate the effect of higher-order nonlinear corrections on the behavior of the vortex dynamics, which are shown to have an important impact on the vortex dynamics behavior.
- Vortex soliton
- nonlinear equation
- variational method
- GPE
How to Cite
References
Rolston SL, Phillips WD. Nonlinear and quantum atom optics. Nature. 2012;416 (6877):219-224.
Gentaro Watanabe B, Prasanna Venkatesh, Raka Dasgupta. Nonlinear phenomena of ultracold atomic gases in optical lattices: Emergence of novel features in extended states. Entropy. 2016;18(4):118.
Ole Bang, Wieslaw Krolikowski, John Wyller, Jens Juul Rasmussen. Collapse arrest and soliton stabilization in nonlocal nonlinear media. Physical Review. 2002; 66(4).
Malomed BA, Mihalache D, Wise F, Torner L. J. Opt. 2005;B7:R53.
Briedis D, Petersen DE, Edmundson D, Krolikowski W, Bang O. Ring vortex solitons in nonlocal nonlinear media. European Quantum Electronics Conference; 2005.
Inouye S, Andrews MR, Stenger J, Miesner HJ, Stamper-Kurn DM, Ketterle W. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature. 1998; 392(6672):151-154.
Zwerger W, ed. The BCS-BEC Crossover and the Unitary Fermi Gases. Springer; 2012.
Levin K, Fetter AL, Stamper-Kurn DM ed. Ultracold bosonic and fermionic gases. Elsevier; 2012.
Y. Wang, Y. Yang, S. Q. He, W. Wang. Dynamic evolution of vortex solitons for coupled Bose-Einstein condensates in harmonic potential trap. AIP Advances. 2017;7:105209.
Shen M, Wang Q, Shi J, Chen Y, Wang X. Nonlocal incoherent white-light solitons in logarithmically nonlinear media. Phys. Rev. 2005;E 72:026604.
Wyller J, Krolikowski W, Bang O, Rasmussen JJ. Generic features of modulational instability in nonlocal Kerr media. Phys. Rev. 2002;E 66:066615.
Wei-Ping Zhong, Milivoj R. Belić, Yiqin Lu, Tingwen Huang. Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation. Physical Review. 2010;E:81(1).
Drazin PG, Johnson RS. Solitons: An introduction, 2nd ed. Cambridge University Press, Cambridge, England; 1989.
Fu H, Wang Y, Gao B. Beyond the Fermi pseudopotential: A modified Gross-Pitaevskii equation. Phys. Rev. 2003;A 67: 053612.
Jaksch D, Cirac JI, Zoller P, Rolston SL, Cote R, Lukin MD. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 2000;85: 2208.
Lukin MD, Fleischhauer M, Cote R, Duan LM, Jaksch D, Cirac JI, Zoller P. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 2001;87: 037901
Saffman M, Walker T, Momer K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 2010;82:2313.
Salasnich L, Malomed BA. Malomed, Solitons and solitary vortices in pancake-shaped Bose-Einstein condensates. Phys. Rev. 2009;A79:053620.
Shomroni I, Lahoud E, Levy S, Steinhauer J. Evidence for an oscillating soliton/vortex ring by density engineering of a Bose–Einstein condensate Nat. Phys. 2009;5: 193–197.
Johnson TH, Bruderer M, Cai Y, Clark SR, Bao W, Jaksch D. Breathing oscillations of a trapped impurity in a Bose gas. EPL. 2012;98:26001.
Wang Y, Zhou Y, Zhou SY. Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential Scientifific Reports. 2016;6:38512.
Qi W, Liang ZX, Zhang ZD. J. The stability condition and collective excitation of a trapped Bose–Einstein condensate with higher-order interactions Phys. 2013;B46: 175301.
-
Abstract View: 19 times
PDF Download: 2 times