Main Article Content



Plant variations are very imperative character to survive under unfavorable conditions. Similarly Arabidopsis shows diversity among their species at geographical, morphological and molecular level worldwide. However Arabidopsis exhibits differences in ploidy level also which includes diploid, tetraploid and amphipoid. Hence, ploidy variation would be useful for basic study of allopolyploidy and autopolyploidy and generated information will be translated to economical important crops in future. Nine species of Arabidopsis reported for example, A. thaliana, A. suecica, A. arenosa, A. neglecta, A. croatica, A. cebennensis, A. pedemontana, A. lyrata, A. halleri. Out of nine, Arabidopsis thaliana has been selected as model plant for molecular studies due to its appropriate data availability and following features like whole genome sequence, short life cycle, less number of chromosome, easy transformation and hands-on laboratory experiments. Therefore there is need to focus their related species which located different altitude, latitude and environmental condition to detect the adaptive traits for translational applications in evolutionary biology and agriculture. Molecular markers would be good approach to detect DNA sequence diversity using third generation sequencing based markers like Simple Sequence Repeats (SSR) and Single Nucleotide Polymorphism (SNP) to distinguish prominent and promising ecotype. Further depth analysis of molecular, ecological and phenotypic diversity will be fruitful to detect unique loci/adaptive trait under adverse environmental conditions in Arabidopsis. Later, most favorable loci/allele may explore and transfer to other crops through comparative analysis and transformation techniques.

Arabidopsis, species, molecular markers, ecotypes, diversity

Article Details

How to Cite
GUPTA, A. (2020). EVALUATION OF MORPHOLOGICAL, ECOLOGICAL AND MOLECULAR DIVERSITY IN ARABIDOPSIS AND FUTURE PROSPECTIVE: A REVIEW. Journal of Biology and Nature, 11(3), 32-40. Retrieved from https://ikprress.org/index.php/JOBAN/article/view/5107
Review Article


Candolle AP de. Regni Vegetabilis Systema Naturale. Treuttel and Würtz, Paris; 1821.

Holl CF, Heynhold G. Flora von Sachsen. Verlag von Justus Naumann, Dresden. 1842;1.

Al-Shehbaz IA, O'Kane Jr SL. Taxonomy and phylogeny of Arabidopsis (Brassicaceae). The Arabidopsis Book/American Society of Plant Biologists. 2002;1.

Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, Fedorenko OM, Holm S, Säll T, Prat E, Marande W. Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Molecular Biology and Evolution. 2017;34(4):957-968.

Monnahan P, Kolář F, Baduel P, Sailer C, Koch J, Horvath R, Laenen B, Schmickl R, Paajanen P, Šrámková G, Bohutínská M. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nature Ecology & Evolution. 2019;3(3):457-468.

Polatschek A. Cytotaxonomische beiträgezur flora der Ostalpenländer, I. Plant Systematics and Evolution. 1966;113(1):1-46.

Mesicek J. The chromosome morphology of Arabidopsis thaliana (L.) Heynh and some remarks on the problem of Hylandra suecica (Fr.) Löve. Folia Geobotanicaet Phytotaxonomica. 1967;2(4):433-436.

Dobes C, Hahn B. In IOPB chromosome data 11, CA Stace, ed. Newslett. Int. Organ. Pl. Biosyst. (Oslo). 1997;26(27):11.

Lee YN. Chromosome numbers of flowering plants in Korea (3). J. Korean Res. Inst. Better Living. 1970;5:pls-1.

Bocher TW. Further studies in Arabis holboellii and allied species. Botanisk Tidsskrift. 1969;64(2-3): 141.

Mulligan GA. Chromosome numbers of the family Cruciferae. I. Canadian Journal of Botany. 1964;42 (11):1509-1520.

Mulligan GA. Synopsis of the genus Arabis (Brassicaceae) in Canada, Alaska and Greenland. Rhodora. 1995;109-163.

Dawe JC, Murray DF. In IOPB Chromosome number reports LXIII, A. Löve, ed, Taxon. 1979;28:265–279.

Skalinska M. Further studies in chromosome numbers of Polish angiosperms. Acta Biol. Cracov. Ser. Bot. 1966;9:31-58.

Harmaja H, Pellinen K.Three different chromosome numbers from Finnish Arabidopsis suecica (Brassicaceae). In Annales Botanici Fennici. 1990;27(4):33-336.

Leute GH. In IOPB chromosome number reports XLVI, A. Löve, ed, Taxon. 1974; 23:801–812.

O’Kane SL Jr, Al-Shehbaz IA. Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Syst. Bot; 2001.

Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132(2):619-633.

Mummenhoff K, Hurka H. Subunit polypeptide composition of Rubisco and the origin of allopolyploid Arabidopsis suecica (Brassicaceae). Biochemical Systematics and Ecology. 1994;22(8):807-811.

O'Kane Jr SL, Al-Shehbaz IA. A synopsis of Arabidopsis (Brassicaceae). Novon. 1997;323-327.

Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. Arabidopsis thaliana: A model plant for genome analysis. Science. 1998;282(5389):662-682.

Brennan AC, Méndez-Vigo B, Haddioui A, Martínez-Zapater JM, Picó FX, Alonso-Blanco C. The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a shared history between North Africa and southern Europe. BMC Plant Biology. 2014;14(1):1.

Bevan M, Murphy G. The small, the large and the wild; the value of comparison in plant genomics. Trends Genet. 1999;15:211–214.

Gupta A, Jaiswal V, Sawant SV, Yadav HK. Mapping QTLs for 15 morpho-metric traits in Arabidopsis thaliana using Col-0× Don-0 population. Physiology and Molecular Biology of Plants. 2020;1-14.

Gupta A, Bhardwaj A, Sawant SV, Yadav HK. Utilization and Characterization of Genome-wide SNP Markers for Assessment of Ecotypic Differentiation in Arabidopsis thaliana. Int. J. Curr. Microbiol. App. Sci. 2019;8(6):158-173.

Linhart YB, Grant MC. Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics. 1996;237-277.

Briggs D, Walters SM. Plant variation and evolution. Cambridge University Press; 1997.

Alonso-Blanco C, Koornneef M. Naturally occurring variation in Arabidopsis: An underexploited resource for plant genetics. Trends in plant science. 2000;5(1):22-29.

Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 2000;290(5490):344-347.

El-Assal SED, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genetics. 2001;29(4):435-440.

Bloomer RH, Lloyd AM, Symonds VV. The genetic architecture of constitutive and induced trichome density in two new recombinant inbred line populations of Arabidopsis thaliana: Phenotypic plasticity, epistasis, and bidirectional leaf damage response. BMC Plant Biology. 2014;14(1):1.

Mauricio R. Ontogenetics of QTL: The genetic architecture of trichome density over time in Arabidopsis thaliana. Genetica. 2005;123(1-2):75-85.

Moore CR, Gronwall DS, Miller ND, Spalding EP. Mapping quantitative trait loci affecting Arabidopsis thaliana seed morphology features extracted computationally from images. G3: Genes Genomes Genetics. 2013;3(1):109- 118.

Ehrenreich IM, Stafford PA, Purugganan MD. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics. 2007;176(2):1223-1236.

Kellermeier F, Chardon F, Amtmann A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiology. 2013;161(3):1421-1432.

McKhann HI, Camilleri C, Bérard A, Bataillon T, David JL, Reboud X. Nested core collections maximizing genetic diversity in Arabidopsis thaliana. The Plant Journal. 2004;38(1):193-202.

Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J. Growth stage–based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. The Plant Cell. 2001;13(7):1499-1510.

Herridge RP, Day RC, Baldwin S, Macknight RC. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods. 2011;7(1):1.

Meyer RC, Steinfath M, Lisec J, Becher M, Wall HW, Torjek O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T.The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2007;104:4759–4764.

Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F. Bay-0× Shahdara recombinant inbred line population: A powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics. 2002;104(6-7):1173-1184.

Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proceedings of the National Academy of Sciences. 1999;96(8):4710-4717.

Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka‐Wall H. Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. The Plant Journal. 2008;53(6):960-972.

El-Soda M, Kruijer W, Malosetti M, Koornneef M, Aarts MG. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. Plant Cell & Environment. 2015;38(3):585-599.

Joseph B, Lau L, Kliebenstein DJ. Quantitative variation in responses to root spatial constraint within Arabidopsis thaliana. The Plant Cell. 2015;27(8):2227-2243.