Main Article Content



Lectins are proteins / glycoproteins of non-immune origin, which are widely distributed in nature. The recognition of lectins and their interaction with other molecules can alter the physiology of cells and trigger favorable biochemical changes in pathological situations, such as cancer, a highly prevalent pathology where new methods are sought for their early identification and targeted treatment that does not produce cytotoxicity in healthy cells. Lectins are a valuable tool for identifying aberrant glycans expressed by neoplastic cells and may also possess antitumor and immunomodulatory activity, representing a therapeutic potential in the treatment of cancer. Many mushrooms have been used for therapeutic purposes throughout history for their medicinal properties, lectins being one of their most important bioactive components. We review the current state of studies on the antiproliferative and immunomodulatory activities of mushroom lectins. We identify 30 different mushroom lectins derived from in vitro and in vivo assays. We conclude that despite the findings obtained, to help elucidate the mechanisms in which each mushroom lectin acts, a greater number of studies is necessary and not lose sight of them as possible antitumor drugs in the near future.

Mushrooms lectins, antiproliferative activity, immunomodulatory activity, cancer.

Article Details

How to Cite
CRUZ, L. M. G., MONTALVO, I. A. G., CRUZ, P. A. H., & VELASCO, I. B. G. (2020). MUSHROOM LECTINS AND THEIR POTENTIAL IN THE TREATMENT OF CANCER. Journal of Biology and Nature, 12(1), 77-88. Retrieved from
Review Article


Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, et al. Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol. 2019; 134:110827.
DOI: 10.1016/j.fct.2019.110827.

Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj. J. 2020; 37(5):533–551.
DOI: 10.1007/s10719-020-09942-y.

Peumans WJ, Van Damme EJ. Lectins as plant defense proteins. Plant Physiol. 1995; 109(2):347–352.
DOI: 10.1104/pp.109.2.347.

Sarup Singh R, Preet Kaur H, Rakesh Kanwar J. Mushroom lectins as promising anticancer substances. Curr. Protein Pept. Sci 2016; 17(8):797–807.
DOI: 10.2174/1389203717666160226144741.

5. Bhutia SK, Panda PK, Sinha N, Praharaj PP, Bhol CS, Panigrahi DP, et al. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res. 2019;144:8–18.
DOI: 10.1016/j.phrs.2019.04.001.

BSTY, Haab B. Microarrays in Glycoproteomics Research Tingting. Clin. Lab. Med. 2009;29(1):15–29.
DOI: 10.1016/j.cll.2009.01.001.

Blagodatski A, Yatsunskaya M, Mikhailova V. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. 2018;9(49):29259–29274.
DOI: 10.18632/oncotarget.25660.

Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina Pinelo S, Paz Ares L. Current challenges in cancer treatment. Clin. Ther. 2016;38(7):1551–1566.
DOI: 10.1016/j.clinthera.2016.03.026.

Lagarda Diaz I, Guzman Partida AM,Vazquez Moreno L. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci. 2017; 18(6):1–18.
DOI: 10.3390/ijms18061242.

Sullivan R, Smith JE, Rowan NJ. Medicinal mushrooms and cancer therapy: Translating a traditional practice into Western medicine. Perspect. Biol. Med. 2006;49(2):159–170.
DOI: 10.1353/pbm.2006.0034.

Hassan MAA, Rouf R, Tiralongo E, May TW, and Tiralongo J. Mushroom lectins: Specificity, structure and bioactivity relevant to human disease. International Journal of Molecular Sciences. 2015;16(4):7802–7838.
DOI: 10.3390/ijms16047802.

Muszyńska B, Kała K, Rojowski J, Grzywacz A, Opoka W. Composition and biological properties of agaricus bisporus fruiting bodies - A Review. Polish J. Food Nutr. Sci. 2017; 67(3):173–181.
DOI: 10.1515/pjfns-2016-0032.

Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. Edible Med. Mushrooms. 2017;5–13.
DOI: 10.1002/9781119149446.ch2.

Ismaya WT, Tjandrawinata RR, Rachmawati H. Lectins from the edible mushroom agaricus bisporus and their therapeutic potentials. Molecules. 2020;25(10):1–16.
DOI: 10.3390/molecules25102368.

Ditamo Y, Rupil LL, Sendra VG, Nores GA, Roth GA, Irazoqui FJ. In vivo immunomodulatory effect of the lectin from edible mushroom Agaricus bisporus. Food Funct. 2016;7(1):262–269.
DOI: 10.1039/c5fo00360a.

Batterbury M, Tebbs CA, Rhodes JM, Grierson I. Agaricus bisporus (edible mushroom lectin) inhibits ocular fibroblast proliferation and collagen lattice contraction. Exp. Eye Res. 2002;74(3):361–370.
DOI: 10.1006/exer.2001.1133.

Nabila N, Meidianto VF, Tjandrawinata RR, Rachmawati H, Ismaya WT. Agaricus bisporus mannose binding protein is not an agglutinating protein. Biochem. Biophys. Res. Commun. 2019;519(4):773–776.
DOI: 10.1016/j.bbrc.2019.09.071.

Rachmawati H, Sundari S, Nabila N, Tandrasasmita OM, Amalia R, Siahaan TJ, et al. Orf239342 from the mushroom Agaricus bisporus is a mannose binding protein. Biochem. Biophys. Res. Commun. 2019; 515(1):99–103.
DOI: 10.1016/j.bbrc.2019.05.107.

Ismaya WT, Tandrasasmita OM, Sundari SD, Lai X, Retnoningrum DS, Dijkstra BW, et al. The light subunit of mushroom Agaricus bisporus tyrosinase: Its biological characteristics and implications. Int. J. Biol. Macromol. 2017;102:308–314.
DOI: 10.1016/j.ijbiomac.2017.04.014.

Chen Y, Jiang S, Jin Y, Yin Y, Yu G, Lan X, et al. Purification and characterization of an antitumor protein with deoxyribonuclease activity from edible mushroom Agrocybe aegerita. Mol. Nutr. Food Res. 2012;56(11):1729–1738.
DOI: 10.1002/mnfr.201200316.

Liang Y, Feng L, Tong X, Wang K, Li DF, Lin JC, et al. Importance of nuclear localization for the apoptosis-induced activity of a fungal galectin AAL (Agrocybe aegerita lectin). Biochem. Biophys. Res. Commun. 2009; 386(3):437–442.
DOI: 10.1016/j.bbrc.2009.06.054.

Yang Q, Yin Y, Pan Y, Ye X, Xu B, Yu W, et al. Anti-metastatic activity of Agrocybe aegerita galectin (AAL) in a mouse model of breast cancer lung metastasis. J. Funct. Foods 2017;41:163–170.
DOI: 10.1016/j.jff.2017.12.058.

Zhao C, Sun H, Tong X, Qi Y.An antitumour lectin from the edible mushroom Agrocybe aegerita. Biochem. J. 2003;374(2):321–327.
DOI: 10.1042/BJ20030300.

Jiang S, Chen Y, Wang M, Yin Y, Pan Y, Gu B, et al. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem. J. 2012; 443(2):369–378.

Ren XM, Li DF, Jiang S, Lan XQ, Hu Y, Sun H, et al. Structural basis of specific recognition of non-reducing terminal N-acetylglucosamine by an Agrocybe aegerita lectin. PLoS One. 2015;10(6,):1–15.
DOI: 10.1371/journal.pone.0129608.

Jiang S, Chen Y, Wang M, Yin Y, Pan Y, Gu B, et al. A novel lectin from agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem. J. 2012; 443(2):369–378.
DOI: 10.1042/BJ20112061.

Feng K, Liu QH, Ng TB, Liu HZ, Li JQ, Chen G, et al. Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens. Biochem. Biophys. Res. Commun. 2006;345(4):1573–1578.
DOI: 10.1016/j.bbrc.2006.05.061.

Koyama Y, Katsuno Y, Miyoshi N, Hayakawa S, Mita T, Muto H, et al. Apoptosis induction by lectin isolated from the mushroom boletopsis leucomelas in U937 cells. Biosci. Biotechnol. Biochem. 2002;66(4):784–789.
DOI: 10.1271/bbb.66.784.

Bovi M, Carrizo ME, Capaldi S, Perduca M, Chiarelli LR, Galliano M, et al. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms. Glycobiology. 2011;21(8):1000–1009. DOI: 10.1093/glycob/cwr012.

Bovi M, Cenci L, Perduca M, Capaldi S, Carrizo ME, Civiero L, et al. BEL -trefoil: A novel lectin with antineoplastic properties in king bolete (Boletus edulis) mushrooms. Glycobiology. 2013;23(5):578–592.
DOI: 10.1093/glycob/cws164.

Patočka J. Bolesatine, a Toxic protein from the mushroom rubroboletus satanas. Mil. Med. Sci. Lett. 2018;87(1):14–20.
DOI: 10.31482/mmsl.2018.003.

Pohleven J, Obermajer N, Sabotič J, Anžlovar S, Sepčić K, Kos J, et al. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim. Biophys. Acta - Gen. Subj. 2009;1790(3):173–181.
DOI: 10.1016/j.bbagen.2008.11.006.

Wong JH, Wang H, NG TB. A haemagglutinin from the medicinal fungus Cordyceps militaris. Biosci. Rep. 2009;29(5):321–327.
DOI: 10.1042/BSR20080153.

Yatohgo T, Nakata M, Tsumuraya Y, Hashimoto Y, Yamamoto S. Purification and Properties of a Lectin from the Fruitbodies of Flammulina velutipes. Agric. Biol. Chem. 1988;52(6):1485–1493.
DOI: 10.1271/bbb1961.52.1485.

NG TB, Ngai PHK, Xia L. An agglutinin with mitogenic and antiproliferative activities from the mushroom Flammulina velutipes. Mycologia. 2006;98(2):167–171.
DOI: 10.3852/mycologia.98.2.167.

Kim H, Cho KM, Gerelchuluun T, Lee JS, Chung KS, Lee CK. Lectins isolated from mushroom fomitella fraxinea enhance MHC-restricted exogenous antigen presentation. Immune Netw. 2007;7(4):197.
DOI: 10.4110/in.2007.7.4.197.

Kawagishi H, Nomura A, Mizuno T, Kimura A, Chiba S. Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. BBA - Gen. Subj. 1990;1034(3):247–252.
DOI: 10.1016/0304-4165(90)90045-X.

Li Y, Zhang G, NG TB, Wang H. A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom hericium erinaceum. J. Biomed. Biotechnol. 2010;2010.
DOI: 10.1155/2010/716515.

Zhao JK, Wang HX, NG TB. Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon. 2009;53(3):360-6.

Wu Y, Wang H, NG TB. Purification and characterization of a lectin with antiproliferative activity toward cancer cells from the dried fruit bodies of Lactarius flavidulus. Carbohydr. Res. 2011;346(16):2576–2581.
DOI: 10.1016/j.carres.2011.09.005.

Park J, Ryu C, Kim H, Na Y, Park H, Kim H. A Sialic acid-specific lectin from the mushroom paecilomyces japonica that exhibits hemagglutination activity and cytotoxicity. Protein Pept. Lett. 2005;11(6):563–569.
DOI: 10.2174/0929866043406445.

Zhang GQ, Sun J, Wang HX, NG TB. A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim. Pol. 2009;56(3):415–421.
DOI: 10.18388/abp.2009_2475.

Li YR, Liu QH, Wang HX, NG TB. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim. Biophys. Acta - Gen. Subj. 2008;1780(1):51–57.
DOI: 10.1016/j.bbagen.2007.09.004.

Wang H, Gao J, NG TB. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun. 2000;275(3):810–816.
DOI: 10.1006/bbrc.2000.3373.

Perduca M, Destefanis L, Bovi M, Galliano M, Munari F, Assfalg M, et al. Structure and properties of the oyster mushroom (Pleurotus ostreatus) lectin. Glycobiology. 2020;30(8):550–562.
DOI: 10.1093/glycob/cwaa006.

Wang H, NG TB, Liu QA novel lectin from the wild mushroom Polyporus adusta. Biochem. Biophys. Res. Commun. 2003;307(3):535–539.
DOI: 10.1016/S0006-291X(03)01230-0.

Manna D, Pust S, Torgersen ML, Cordara G, Künzler M, Krengel U, et al. Polyporus squamosus Lectin 1a (PSL1a) exhibits cytotoxicity in mammalian cells by disruption of focal adhesions, inhibition of protein synthesis and induction of apoptosis. PLoS One. 2017;12(1):1–20.
DOI: 10.1371/journal.pone.0170716.

Zhang G, Sun J, Wang H, NG TB. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine. 2010;17(10):775–781.
DOI: 10.1016/j.phymed.2010.02.001.

Chumkhunthod P, Rodtong S, Lambert SJ, Fordham-Skelton AP, Rizkallah PJ, Wilkinson MC, et al. Purification and characterization of an N-acetyl-D-galactosamine-specific lectin from the edible mushroom Schizophyllum commune. Biochim. Biophys. Acta - Gen. Subj. 2006;1760(3):326–332.
DOI: 10.1016/j.bbagen.2006.01.015.

Zhang W, Tian G, Geng X, Zhao Y, NG TB, Zhao L, et al. Isolation and characterization of a novel lectin from the edible mushroom Stropharia rugosoannulata. Molecules 2014;19(12):19880–19891.
DOI: 10.3390/molecules191219880.

Wang HX, NG TB, Liu WK, Oou VEC, Chang ST. Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int. J. Pept. Protein Res. 1995;46(6):508–513.
DOI: 10.1111/j.1399-3011.1995.tb01606.x.

Keung Liua W, Ho JCK, NG TB. Suppression of cell cycle progression by a fungal lectin: Activation of cyclin-dependent kinase inhibitors. Biochem. Pharmacol. 2001; 61(1):33–37.
DOI: 10.1016/S0006-2952(00)00533-5.

Marty-Detraves C, Francis F, Baricault L, Fournier D, Paquereau L. Inhibitory action of a new lectin from Xerocomus chrysenteron on cell-substrate adhesion. Mol. Cell. Biochem. 2004;258(1–2):49–55.
DOI: 10.1023/B:MCBI.0000012835.08001.8f.

Liu Q, Wang H, NG TB. First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim. Biophys. Acta - Gen. Subj. 2006;1760(12):1914–1919.
DOI: 10.1016/j.bbagen.2006.07.010.

Ennamany R, Kretz O, Badoc A, Deffieux G, Creppy EE. Effect of bolesatine, a glycoprotein from Boletus satanas, on rat thymus in vivo. Toxicology. 1994;89(2):113–118.
DOI: 10.1016/0300-483X(94)90219-4.

Licastro F, Morini MC, Kretz O, Dirheimer G, Creppy EE, Stirpe F. Mitogenic activity and immunological properties of bolesatine, a lectin isolated from the mushroom Boletus satanas Lenz. Int. J. Biochem. 1993;25(5):789–792.
DOI: 10.1016/0020-711X(93)90366-M.

Wang HX, Liu WK, NG TB, Ooi VEC, Chang ST. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology. 1996;31(2–3):205–211.
DOI: 10.1016/0162-3109(95)00049-6.