ESTABLISHMENT OF A PAPAYA (Carica papaya L.) MICROPROPAGATION PROTOCOL IN A TEMPORARY TWIN VESSEL IMMERSION SYSTEM

Main Article Content

RUTH GÓMEZ
JOSÉ GARCÍA
JOFFRE MENDOZA
FERNANDO PIÑA
EFRÉN SANTOS-ORDÓÑEZ
MÓNICA ARMAS
JOSÉ FLORES

Abstract

Papaya production is affected by sexual variability in the seed. Conventional methods of propagation involve the maintenance of large land scale crops to supply the consumer's demand. Micropropagation techniques using temporary immersion of twin vessels (TIS) bioreactors are an alternative for papaya production. The objective of the study is to establish a disinfection protocol for the introduction of axillary buds and to evaluate different immersion times and inoculum density in the TIS to obtain a higher multiplication rate. Disinfection of the plant material was performed with 70% ethanol for 1 minute, 2% sodium hypochlorite for 5, 6 and 8 min, and sterile water washes. Percentage of contamination and oxidation was evaluated for 21 days. The introduction stage, Murashige & Skoog (MS) medium was used with 1 mg.L-1 of gibberellic acid and 2 mg.L-1 of kinetin. Similarly for the multiplication stage, MS medium was supplemented with 0.5 mg.L-1 of benzyl adenine, 0.5 mg.L-1 of indoleacetic acid, and 0.3 mg.L-1 of gibberellic acid. The multiplication rate, number of leaves, height, and diameter of the stem was evaluated for 21 days. The plant material was transferred to the TIS to evaluate the immersion time (1 and 2 min) and density of the inoculum (4 and 8) in 200 mL of liquid multiplication medium, with an immersion frequency of 6 h, photoperiod of 12 h of lighting per day and 28°C. In the disinfection stage, 100% survival was achieved without oxidation using 2% sodium hypochlorite for 6 and 8 min. Survival rate was 96.4% and 83.33% for the introduction and multiplication stage in semi-solid medium, respectively. For the latter, 1.88 ± 0.02 leaves were observed, 1.12 ± 0.04 cm in height, diameter of 0.43 ± 0.01 cm, and a multiplication rate of 1.20 ± 0.02. In the TIS, 6.03 ± 0.04 leaves were observed, 1.65 ± 0.10 cm in height, diameter 0.73 ± 0.02, and a multiplication rate of 5.05 ± 0.06 using 2 min of immersion every 6 h with an inoculum density of eight. Research established that high multiplication was obtained by increasing immersion of plant material in liquid culture medium. This study will contribute to the strengthening of the productive sector, offering seedlings with the suitable sex (hermaphrodite), and high genetic and phytosanitary quality.

Keywords:
Papaya, in vitro propagation, temporary immersion systems, TIS.

Article Details

How to Cite
GÓMEZ, R., GARCÍA, J., MENDOZA, J., PIÑA, F., SANTOS-ORDÓÑEZ, E., ARMAS, M., & FLORES, J. (2020). ESTABLISHMENT OF A PAPAYA (Carica papaya L.) MICROPROPAGATION PROTOCOL IN A TEMPORARY TWIN VESSEL IMMERSION SYSTEM. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(13-14), 1-6. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/5067
Section
Short Communication

References

Posada L. Aplicaciones de la biotecnología a la propagación de la papaya. Biotecnología Vegetal. 2005;5(2):67-69.

ProEcuador. Análisis Sectorial de Papaya: Instituto de Promoción de Exportación e Inversiones; 2015.
(Downloaded: October, 17, 2017)
Available:http://www.proecuador.gob.ec/wpcontent/uploads/2015/07/PROEC_AS2015_PAPAYA1.pdf

Lobo M. Caracterización bioquímica de frutos de papaya (Carica papaya, cv Sunrise), Hembra y Hermafrodita, en relación con su aptitud al procesado por congelación. Tesis Doctoral. Madrid: Universidad Complutense de Madrid; 1995.

Rodríguez-Manzaneque MA, Cuevas J, Hueso J. Formas florales de la papaya cultivada en invernaderos de Almería; 2008.
(Downloaded: September 21, 2019)
Available:https://studylib.es/doc/5023199/formas-florares-de-la-papaya

Talavera C, Espadas F, Fuentes G, Santamaría J. Acclimatization, rooting and field establishment of micropropagated papaya plants. Acta Horticulturae. 2009;812:373-378.

Guzmán G. Guide for the cultivation of papaya. San José, Costa Rica: Ministerio de Agricultura y Ganadería; 1998.

Roca W, Mroginski L. Cultivo de Tejidos en la Agricultura: Fundamentos y aplicaciones. Cali, Colombia: CIAT; 1991.

Berthouly M, Etienne H. Temporary immersion system: A new concept for use liquid medium in mass propagation. Liquid Culture Systems for in vitro Plant Propagation. 2005;165-195.

Escalona M. Scaling-up plant production by temporary immersion and quality of regenerants. Cuba: Bioplant Center of the University of Ciego de Ávila; 2005.

Niemenak N, Saare-Surminski K, Rohsius C, Omokolo D, Lieberei R. Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Reports. 2008;27(4):667-676.

Houk T, Poth J, Snider J. Study guide. University Physics; 2016.

Maldonado E, Rodríguez L, Gómez O, Cárdenas M. Diseño y construcción de un sistema de inmersión temporal. Centro Agrícola. 2003;30:69-72.

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-497.

Korneva S, Flores J, Santos E, Piña F, Mendoza J. Plant regeneration of plantain 'Barraganete' from somatic embryos using a temporary immersion system. Biotecnología Aplicada. 2013;30(4):267-270.

Mondal M, Gupta S, Mukherjee BB. Callus culture and plantlet production in Carica papaya (Var. Honey Dew). Plant Cell Reports. 1994;13:390-393.

Solis R, Olivera J, La Rosa R. In vitro propagation of Carica papaya var. PTM-331 from apical meristem. Revista Peruana de Biología. 2011;18(3):343- 347.

Hernández Y, González M. Effects of oxidation microbial contamination and phenolic in vitro establishment of perennial fruit. Cultivos Tropicales. 2010;31(4).

Aldana L, Sarassa S. Effect of natural disinfectants and antimicrobials against strains of Listeria monocytogenes. Bogotá: Javeriana University; 1999.

Vegas García A, Sandrea Y, González O, Díaz A, Albarran JG, Schmidt A, Salazar E, Mujica Y, Casado R, Fernández J, Marín RC. Micropropagación de plantas de lechosa en recipientes de inmersión temporal a partir de brotes axilares. Revista Colombiana de Biotecnología. 2015;17(1): 70-78.

Damiano C, Monticelli S, La Starza SR, Gentile A, Frattarelli A. Temperate fruit plant propagation through temporary immersion. Acta Horticulturae. 2003;625:193-200.

Pucchoa D, Purseramen P, Rujbally B. Effects of medium support and gelling agent in the tissue of tobacco. Mauritius: University of Mauritius; 1999.

Doran P. Bioprocess engineering principles. San Diego: Academic Press; 2013.