DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI ASSOCIATED WITH CAROB TREES (Ceratonia siliqua L.) IN WESTERN ALGERIA

PDF

Published: 2020-07-30

Page: 180-193


YOUCEF DALLI *

Laboratoire de Biotechnologie des Rhizobia et Amélioration des Plantes, Université Oran 1, Algeria.

NOURREDINE YAHIA

Laboratoire de Biotechnologie des Rhizobia et Amélioration des Plantes, Université Oran 1, Algeria.

ABDELKADER BEKKI

Laboratoire de Biotechnologie des Rhizobia et Amélioration des Plantes, Université Oran 1, Algeria.

*Author to whom correspondence should be addressed.


Abstract

The carob tree is a leguminous plant originating in the Mediterranean region. It is used in many reforestation and ornamentation programs. The aim of this study is to characterize the diversity of AMF associated with the carob tree and the importance of their role in the integration of a semi-arid ecosystem in Western Algeria. Samples of soil and roots in the rhizosphere of ten carob specimen were taken in different areas in the northwest of Algeria: Hassasna, Nedroma and Ouled Mimoun. Physicochemical analyses were carried out as well as enumeration and morphological and anatomical analyses of the spores. The roots were trypan blue- dyed to determine the level of mycorrhization. The results showed that the soil of Ouled Mimoun is the richest of the three sites in organic matter, and contains the largest proportion of nitrogen and available phosphorus. It also has the largest spore count: 641 per 100 g of soil. Furthermore, the study revealed the presence of 16 morphotypes of AMF spores in all three sites, Glomus and Acaulospora genera being the most abundant. Likewise, microscopic observation of the roots revealed the presence of all the structures typical of AMF including vesicles, hyphae and arbuscular structures. The level of mycorrhization in the roots sampled in Ouled Mimoun was the highest with a mycorrhization frequency of F=94%, an intensity of M=44% and an arbuscular rate of A=94%. The mycorrhizal abundance and high infectivity of the carob roots taken in the site of O.Mimoun, an old plantation site, reflect the physicochemical characteristics of a fertile and more lively soil, in particular its organic carbon and nitrogen content. Another explanation may be that indigenous AMF communities, apparently more resilient and better adapted to the edaphic conditions, have gradually replaced the fungi introduced.

Keywords: Acaulospora, ecosystem, endomycorrhiza, glomus, semi-arid.


How to Cite

DALLI, Y., YAHIA, N., & BEKKI, A. (2020). DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI ASSOCIATED WITH CAROB TREES (Ceratonia siliqua L.) IN WESTERN ALGERIA. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(17-18), 180–193. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/5224

Downloads

Download data is not yet available.

References

Batlle I, Tous J. Carob tree, in promoting the conservation and use of underutilized and neglected crops: Gatersleben/ International plant resources institute. Rome. Italy; 1997.

Vourdoubas J. Present and future uses of biomass for energy generation in the island of crete—Greece. Energy Power Sources. 2015;2:158–163.

Konate I. Diversité phénotypique et moléculaire du Caroubier (Ceratonia siliqua L.) et des bactéries endophytes qui lui sont associées. University of Mohammed V; 2007.

Sbay H. Le caroubier au maroc un arbre d'avenir, in Maroc nature. 2008;47.

Şahin G, Taşlıgil N. Agricultural geography analysis of carob tree (Ceratonia siliqua L.) from Turkey. Turkish Journal of Agriculture-Food Science and Technology. 2016;4(12):1192-1200.

FAOSTAT, The Statistics division of the Food and Agriculture Organization of the United Nations; 2017.

Mahdad MY, Gaouar SBS. Le caroubier (Ceratonia siliqua L.) dans le nord ouest de l'Algerie situation et perspectives d'amélioration. 2016;90.

Ouahmane L, et al. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. African Journal of Biotechno-logy. 2012;11(98):16422-16426.

El Asri A, et al. Arbuscular mycorrhizal fungi associated with rhizosphere of carob tree (Ceratonia siliqua L.) in Morocco. IJPAB. 2014;2(3):286-297.

Harley JL, Smith SE. Mycorrhizal symbiosis. New York: Academic Press. 1983;483.

Rillig MC. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters. 2004;7:740-754.

Van der Heijden MG, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:69–72.

Wang F. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology. 2017;47:1901–1957.

Rodríguez-Echeverría S, et al. Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: Spore abundance and root colonisation in six locations of the European coast. European Journal of Soil Biology. 2008;44(1):30-36.

Carvalho LM, Correia PM, Martins-Loução MA. Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza. 2004;14(3):165-170.

Hatimi A, Tahrouch S. Caractérisations chimique, botanique et microbiologique du sol des dunes littorales du Souss- Massa. Biomatec Echo. 2007;2(5):85-97.

AFNOR, Granulats, analyse granulo-métrique par tamisage, in Norme. 1990;18-560.

Drouineau G. Rapid determination of the active limestone sols. Ann. Agron. 1942; 12.

Anne P. The rapid assay of organic carbon in soils. 1945;161-172.

Kjeldahl J. Neue methode zur bestimmung des stickstof fs in organischen. Körpern. Z. Anal. Chem. 22:366-382 1883.

Olsen SR, et al. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circ. 939. U.S. Dep. Agric., Washington, DC; 1954.

Phillips J, Hayman D. Improved procedures for clearing roots and staining parasitic and vesicular arbuscularmycorrhizal fungi for rapid assessment of infection.Trans Br Mycol Soc. 1970;55:158-161.

Trouvelot A, Kough J, Gianinazzi-Pearson V. Mesure du taux de mycorrhization d'un system radiculaire recherché de methods d'estimation ayant une signification fonctionnelle, in Physiological and genetical aspects of mycorrhizae, G.-P.V.e.G. S, Editor. 1986;217-221.

Gerdemann J, Nicolson T. Pores of mycorrhizalendogone species extracted form soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963;46:235-244.

Azcon-Aguilar C, et al. Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterranean shrub lands. Appl. Soil Ecol. 2003;22:29-37.

INVAM. International culture collection of vesicular arbuscular mycorrhizal fungi; 2018.

Available:https://invam.wvu.edu/

Blaskowski J. Arbuscular mycorrhizal fungi (Glomeromycota), endogone and complexipes species deposited in the department of plant pathology, university of agriculture in szczecin, Poland; 2018.

Available:http://www.zor.zut.edu.pl/Glomeromycota/index.html

Ait Chitt M, Belmir H, Lazrak A. Production de plants sélectionnés et greffés de caroubier. Bulletin mensuel d’information et de liaison du PNTTA. Transfert de technologie en agriculture, MAPM/DERD. 2007;153.

Khan Towhid O. Soils: Principals, properties and management. Springer Dordrechi Heidelberg: New York, London; 2013.

Laid K, et al. Bio-revegetation impact on physicochemical characteristics of sandy quarry soil in Terga beach region in Algeria. Journal of Agricultural Science. 2014;6.

Salomon JN, Précis de Karstologie. (2 ed.). France, Presses Universitaires de Bordeaux: Pessac édition; 2006.

Koske RE, Halvorson WL. Ecological studies of vesicular mycorrhizae in barrier sand dune Can J Bot. 1981;59:1413-1422.

Nehila A. Symbiose telluriques: Role et mécanisme de Tolérance aux stress abiotiques, in Biotechnologie. Université Ahmed Ben bella Oran1. 2016;170.

Gayneshware P, et al. Role of microorganisms in improving P nutrition of plants. Plant and Soil. 2002;245(1):83-93.

Bolan NS. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil. 1991;134:189-207.

Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999: 17:319–339.

Bot A, Benites J. The importance of soil organic matter Key to drought-resistant soil and sustained food and production. FAO Soils Bulletin. 2005;80:78.

Khudairi AK. Mycorrhiza in desert soils. Bio SCI. 1969;19(7):598-99.

Correia PM, MA. Martins-Loução. Preliminary studies on mycorrhizae of Ceratonia siliqua L. In: Azcon-Aguilar, C. and Barea, J. M. (Eds) Mycorrhizas in integrated systems from genes to plant development. Office for Official Publications of the European Communities, Luxembourg. 1996;86-88.

Manaut N, et al. Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecological Engineering. 2015;79:113– 119.

Habte M, Muruleedhara BN, Ikawa H, Response of neem (Azadirachta indica) to soil P concentration. Arid Soil Research and Rehabilitation. 1993;7(4):327-333.

Songachan LS, Kayang H. Diversity and distribution of arbuscular mycorrhizal fungi in solanum species growing in natural condition. Agric Res. 2012;1(3):258–264.

Ruotsalainen AL, Vare H, Vestberg M. Seasonality of root fungal colonization in low-alpine herbs. Mycorrhiza. 2002;12:29–36.

Becerra AG, et al. Arbuscular mycorrhizal colonization of Alnus acuminate Kunth in northwestern Argentina in relation to season and soil parameters. Ci Suelo. 2007; 25(1):7–13.

Saunders WMH, Metson AJ. Seasonal variation of phosphorus in soil and pasture. New Zealand Journal of Agricultural Research. 1971;14(2):307-328.

Fakhech A, Ouahmane L, Hafidi M. Seasonality of mycorrhizal attributes, soil phosphorus and nitrogen of Juniperus phoenicea and Retama monosperma boiss. in an Atlantic sand dunes forest. Journal of Sustainable Forestry. 2019;38(1):1-17.

Nogkling P, Kayang H. Soil physico-chemical properties and its relationship with AMF spore density under two cropping systems. Current Research in Environmental & Applied Mycology. 2017; 7(1):33-39.

Sawant VS, Bhale UN. Physico-chemical analyses and status of arbuscular mycorrhizal fungi from rhizosphere soils of solanaceous vegetables. Journal of Pharmacy and Biological Sciences. 2016; 11:97-104.

Vyas M, Vyas A. Diversity of arbuscular mycorrhizal fungi associated with rhizosphere of Capsicum annuum in Western Rajasthan. International Journal of Plant, Animal and Environmental Sciences. 2012;2(3):256-262.

Rilling M. Arbuscular mycorrhizae, glomalin and soil aggregation. Canadian Journal of Soil Science. 2004;84:355–363.

Labidi S, et al. Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza. 2012;22(5):337-345.

Santos-González JC, et al. Soil, but not cultivar, shapes the structure of arbuscular mycorrhizal fungal assemblages associated with strawberry. Microbial Ecology. 2011; 62(1):25-35.

Bencherif K, et al. Soil and seasons affect arbuscular mycorrhizal fungi associated with Tamarix rhizosphere in arid and semi-arid steppes. Applied Soil Ecology. 2016; 107:182–190.

Selmaoui K, et al. Diversity of endomycorrhizal fungi in the rhizosphere of sugar cane (Saccharum officinarum) grown in morocco. IJRSR. 2017;8:15753-15761.

Bouazza MK, et al. Assessing the native arbuscular mycorrhizal symbioses to rehabilitate a degraded coastal sand dune in Algeria. IJACS. 2015;194-202.

Johnson NC, et al. Dynamics of vesicular-arbuscular mycorrhizae during old-field succession. Oecologia. 1991;86:349-358.

Khakpour O, Khara J. Spore density and root colonization by arbuscular mycorrhizal fungi in some species in the northwest of Iran. International Research Journal of Applied and Basic Sciences. 2012;3(5): 977-982.

Meddad-Hamza A, et al. Spatiotemporal variation of arbuscular mycorrhizal fungal colonization in olive (Olea europaea L.) roots across a broad mesic-xeric climatic gradient in North Africa. Sci Total Environ. 2017;583:176-189.

Abdelhalim TS, et al. Species composition and diversity of arbuscular mycorrhizal fungi in White Nile state, Central Sudan. Archives of Agronomy and Soil Science. 2014;60(3):377-391.

Daniel TJ, et al. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol. 2001; 36:203-209.

Mosbah M, De Lajudie P, Mars M. Molecular identification of arbuscular mycorrhizal fungal spores associated to the rhizosphere of Retama raetam in Tunisia. Soil Science and Plant Nutrition; 2018.

Antoniolli ZI, et al. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, south Australia. R. Bras. 2002; 26:627-635.

Saranya Babu Jayaprakash CM, Nagarajan N. Studies on mycorrhizal biodiversity in medicinal plant species of Pookode Lake area, Wayanad, India. Annals of Plant Sciences. 2017;1835-1844.

Agwa HE, Abdel-Fattah GM. Arbuscular mycorrhizal fungi (Glomales) in Egypt. II. An ecological view of some saline affected plants in the deltaic mediterranean coastal land. 2005;44(1-2):1.

Herrmann L, et al. Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza. 2016;26(8):863-877.