BIO PRESERVATIVE POTENTIAL OF BACTERIOCINS: CLASSIFICATION, MODE OF ACTION AND APPLICATION: A REVIEW

Main Article Content

SHELLY KATARIA
SONICA SONDHI
PALKI SAHIB KAUR
JASVEEN BAJWA

Abstract

Increasing demand of natural over chemical preservatives initiated the rigorous research on the novel products isolated from the microorganisms having biopreservative potential to unfold the new range of antimicrobial agents to defend the food borne pathogens efficiently. One such antimicrobial compound bacteriocinis synthesized by various microorganisms. Bacteriocin is a protein molecule that possesses antimicrobial features and protects food borne pathogen, research is more focused on discovering novel bacteriocins at industrial scale. Present review is focused on bacteriocin’s classification, their mechanism of action and applications in food industry.

Keywords:
Antimicrobial compounds, bacteriocins, biopreservatives

Article Details

How to Cite
KATARIA, S., SONDHI, S., KAUR, P. S., & BAJWA, J. (2020). BIO PRESERVATIVE POTENTIAL OF BACTERIOCINS: CLASSIFICATION, MODE OF ACTION AND APPLICATION: A REVIEW. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(19-20), 15-28. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/5234
Section
Review Article

References

Eijlander RT, Abee T, Kuipers OP. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr. Opin. Biotechnol. 2011;22:180-186.

Zhang JC, Sun L, Nie QH. Botulism, where are we now? Clin. Toxicol. (Phila). 2010; 48:867–879.

Müller-Herbst S, Wüstner S, Mühlig A, Eder D, Fuchs TM, Held C, Ehrenreich A, Scherer S. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiol. 2014;160:752–765.

EldinMaliyakkal Johnson, Yong-Gyun Jung, Ying-Yu Jin, Rasu Jayabalan, Seung Hwan Yang, Professor Joo Won Suh. Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition. 2017;2743-2767.

Abee T, Krockel L, Hill C. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 1995;28:169–185.

De Martinis ECP, Franco BDGM. Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int. J. Food Microbiol. 1998;42(1):119–126.

Gálvez A, Abriouel H, Benomar N, Lucas R. Microbial antagonists to food-borne pathogens and 301 biocontrol. Curr Opin Biotechnol. 2010;21:142-148.

Lucera A, Costa C, Conte A, Del Nobile. MA: Food applications of natural anti-microbial 299 compounds. Front Microbiol. 2012;3:287-300.

Kashani-Haddad H, Nikzad H, Mobaseri S, Hoseini ES. Synergism effect of nisin peptide in reducing chemical preservatives in food industry. Life Sci. J. 2012;9(1): 496–501.

Yost CK. Biopreservation, Encycl. Meat Sci. 2014;76–82.

Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie. 1988;70:337– 49.

Szkaradkiewicz AK, Karpinski TM. Probiotics and probiotics. J Biol Earth Sci. 2013;3:42–7.

Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: Inventory and potential applications as an aquaculture probiotic. Mar Drugs. 2010;8:1153-77.

Walsh CJ, Guinane CM, Hill C, Ross RP, O'Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol. 2015; 15:183.

O’Sullivan L, Ryan MP, Ross RP, Hill C. Generation of food grade lactococcal starters which produce the lantibiotics-lacticin 3147 and lacticin 481. Appl. Environ. Microbiol. 2003;69:3681–3685.

Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12:39–85.

Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR. The diversity of bacteriocins in gram-positive bacteria. Bacteriocins. 2007;45–92.

Venema K, Venema G, Kok J. Lactococcins: Mode of action, immunity and secretion. Int. Dairy J. 1995a;5(8):815–832.

Venema K, Venema G, Kok J. Lactococcal bacteriocins: Mode of action and immunity. Tren. Microbiol. 1995b;3(8):299–304.

Diep DB, Nes IF. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets. 2002;3:107–122.

Pag U, Sahl HG. Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des. 2002;8:815–833.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–788.

Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61: 477–501.

González-Martínez BE, Gómez-Treviño M, Jiménez-Salas Z. Bacteriocinas de probioticos.Rev Salud Publica y Nutricion. 2003;4.

Parada JL, Caron CR, Medeiros ABP, Soccol CR. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives, Braz. Arch. Biol. Technol. 2007;50:521–542.

Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 1998;30(2):317–27.

McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001a;25(3):285–308.

Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents. 2017;49(1):1–11.

Bruno ME, Kaiser A, Montville TJ. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 1992;58(7):2255-2259.

Chikindas ML, Novák J, Driessen AJ, Konings WN, Schilling KM, Caufield PW. Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob Agents Chemother. 1995;39(12):2656-60.

Ramu R, Shirahatti PS, Devi AT, Prasad A, J, K, MS, L, MN, NP. Bacteriocins and their applications in food preservation. Critical Reviews in Food Science and Nutrition; 2015.

Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis. 2019;128:171-177.

Kumariya R, Sood SK, Rajput YS, Garsa AK. Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression. Ann. Microbiol. 2015;65:721–732.

Rodriguez JM, Martinez MI, Kok J. Pediocin PA-1, a Widespectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food. Sci. Nutr. 2002;42(2):91–121.

Balla E, Dicks LM, Du Toit M, Van Der Merwe MJ, Holzapfel WH. Characteri-zation and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl. Environ. Microbiol. 2000;66(4):1298–304.

Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986;167:439-46.

Vaugan EE, Daly C, Fitzgerald GF. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol. 1992;73:299-308.

Joerger MC, Klaenhammer TR. Characteri-zation and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 1986;167(2): 439–46.

Rea MC, Ross RP, Cotter PD, Hill C. Classification of bacteriocins from gram-positive bacteria. Prokaryotic Antimicrobial Peptides. 2011;29–53.

Kaškonienė V, Stankevičius M, Bimbiraitė-Survilienė K, Naujokaitytė G, Šernienė L, Mulkytė K, Maruška A. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology. 2017;101(4):1323–1335.

Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE. Structure-function relationships of the non-lanthionine containing peptide (class II) bacteriocins produced by grampositive bacteria. Curr Pharm Biotechnol. 2009; 10:19–37.

O'Shea EF, O'Connor PM, O'Sullivan O, Cotter PD, Ross RP, Hill C. Bactofencin A, a new type of cationic bacteriocin with unusual immunity, mBio. 2013;4:e00498–e00513.

Nilsen T, Nes IF, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 2003;69(5):2975–2984.

Heng NC, Burtenshaw GA, Jack RW, Tagg JR. Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid. 2004;52(3):225–9.

Heng NCK, Swe PM, Ting YT, Dufour M, Baird HJ, Ragland NL, Burtenshaw GA, Jack RW, Tagg JR. The large antimicrobial proteins (bacteriocins) of streptococci. Interna. Congress Series. 2006;1289:351–354.

daSilva Sabo S, Vitolo M, Gonzalez JMD, De Souza Oliveira RP. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res. Int. 2014;64:527-536.

Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013;11:95–105.

Machaidze G, Seelig J. Specific binding of cinnamycin (Ro 09-0198) to phosphatidyl ethanolamine. Comparison between micellar and membrane environments. Biochemistry. 2003;42:12570–12576.

ParksWM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie. 2007;89:500–507.

Vincent PA, Morero RD. The structure and biological aspects of peptide antibiotic microcin J25. Curr. Med. Chem. 2009;16: 538–549.

Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, et al. Aaspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J. Biol. Chem. 2006;281:18033-18042.

Chen H, Hoover D. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2003;2:82–100.

Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen Meyer J. The two-peptide class II bacteriocins: Structure, production, and mode of action. J. Mol. Microbiol. Biotechnol. 2007;13: 210–219.

Kaewnopparat S, Dangmanee N, Kaewnopparat N, Srichana T, Chulasiri M, Settharaksa S. In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe. 2013;22:6–13.

Sanchez J, Diep DB, Herranz C, Nes IF, Cintas LM, Hernández PE. Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiology Letters. 2007;270(2):227–236.

Howell TH, Fiorellini JP, Blackburn P, Projan SJ, Harpe J, Williams RC. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. Journal of Clinical Periodontology. 1993;20(5):335–339.

Espitia PJP, Soares N, de FF, Teofilo RF, Coimbra JS, dos R, Vitor DM, Batista RA, Medeiros EAA. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers. 2013;94(1):199–208.

Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. Journal of Antimicrobial Chemotherapy. 2004;54(3):648–653.

Simha BV, Sood S, Kumariya R, Garsa AK. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol. Res. 2012;167:544–549.

Ross RP, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 2002;79:3–16.

FAO and WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Rome: FAO; 2006.

Sobrino-L´opez A, Mart´ın-Belloso O. Use of Nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008b;18:329–43.

Pucci MJ, Vedamuthu ER, Kunka BS, Vandenbergh PA. Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 1988; 54:2349–2353.

Cintas L, Casaus P, Fernández M, Hernández P. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 1998;15:289–298.

Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class II a bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 1998; 64:3275-3281.

Silva CCG, Silva SPM, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology. 2018;9.

Mitra S, Mukhopadhyay BC, Biswas SR. Potential application of the nisin Z preparation of Lactococcus lactis W8 in preservation of milk. Lett. Appl. Microbiol. 2011;53:98–105.

Oshima S, Hirano A, Kamikado H, Nishimura J, Kawai Y, Saito T. Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk based pudding. J. Appl. Microbiol. 2014;116:1218–1228.

Alves FCB, Barbosa LN, Andrade B, Albano M, Furtado FB, Pereira AFM, et al. Short communication: Inhibitory activities of the lantibiotic nisin combined with phenolic compounds against Staphylococcus aureus and Listeria monocytogenes in cow milk. J. Dairy Sci. 2016;99:1831–1836.

Morgan S, Galvin M, Ross R, Hill C. Evaluation of a spraydried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Lett. Appl. Microbiol. 2001;33:387–391.

Ribeiro SC, O’Connor PM, Ross RP, Stanton C, Silva CC. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int. Dairy J. 2016;63:18–28.

Yildirim Z, Öncül N, Yildirim M, Karabiyikli S¸. Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation agents. Acta Aliment. 2016;45:486–492.

Shi F, Wang YW, Li YF, Wang XY. Modeofaction of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Biotechnol. Lett. 2016; 38:1551–1557.

Arqués JL, Rodríguez E, Nuñez M, Medina M. Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control. 2011;22:457–461.

O’Mahony T, Rekhif N, Cavadini C, Fitzgerald GF. The application of a fermented food ingredient containing ‘variacin’, a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products. J. Appl. Microbiol. 2001;90:106–114.

Arakawa K, Kawai Y, Iioka H, Tanioka M, Nishimura J, Kitazawa H, et al. Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation. J. Dairy Sci. 2009;92:2365–2372.

Fagundes PC, De Farias FM, Da Silva Santos OC, Da Paz JAS, Ceotto Vigoder H, Alviano DS, et al. The four-component aureocin A 70 as a promising agent for food biopreservation. Int. J. Food Microbiol. 2016;237:39-46.

Lauková A, Vlaemynck G, Czikkova S. Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol. 2001;46:157–160.

Muñoz A, Ananou S, Gálvez A, Martínez-Bueno M, Rodríguez A, Maqueda M, et al. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. Int. Dairy J. 2007;17: 760–769.

Acuña L, Corbalan NS, Fernandez-No IC, Morero RD, Barros Velazquez J, Bellomio A. Inhibitory effect of the hybrid bacteriocin Ent35-MccV on the growth of Escherichia coli and Listeria monocy to genes in model and food systems. Food Bioproc. Technol. 2015;8:1063–1075.

Ribeiro SC, Ross RP, Stanton C, Silva CC. Characterization and application of anti listerial enterocins on model fresh cheese. J. Food Prot. 2017;80:1303–1316.

Kassaa IA, Rafei R, Moukhtar M, Zaylaa M, Gharsallaoui A, Asehraou A, hihib NE. LABiocin database: A new database designed specifically for Lactic Acid Bacteria bacteriocins. International Journal of Antimicrobial Agents. 2019;54: 771-779.

de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 2006;34:W273–79.

Mills S, Stanton C, Hill C, Ross RP. New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology. 2011;2(1):299–329.

Eijlander RT, Abee T, Kuipers OP. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr. Opin. Biotechnol. 2011;22:180-186.

Zhang JC, Sun L, Nie QH. Botulism, where are we now? Clin. Toxicol. (Phila). 2010; 48:867–879.

Müller-Herbst S, Wüstner S, Mühlig A, Eder D, Fuchs TM, Held C, Ehrenreich A, Scherer S. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiol. 2014;160:752–765.

EldinMaliyakkal Johnson, Yong-Gyun Jung, Ying-Yu Jin, Rasu Jayabalan, Seung Hwan Yang, Professor Joo Won Suh. Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition. 2017;2743-2767.

Abee T, Krockel L, Hill C. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 1995;28:169–185.

De Martinis ECP, Franco BDGM. Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int. J. Food Microbiol. 1998;42(1):119–126.

Gálvez A, Abriouel H, Benomar N, Lucas R. Microbial antagonists to food-borne pathogens and 301 biocontrol. Curr Opin Biotechnol. 2010;21:142-148.

Lucera A, Costa C, Conte A, Del Nobile. MA: Food applications of natural anti-microbial 299 compounds. Front Microbiol. 2012;3:287-300.

Kashani-Haddad H, Nikzad H, Mobaseri S, Hoseini ES. Synergism effect of nisin peptide in reducing chemical preservatives in food industry. Life Sci. J. 2012;9(1): 496–501.

Yost CK. Biopreservation, Encycl. Meat Sci. 2014;76–82.

Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie. 1988;70:337– 49.

Szkaradkiewicz AK, Karpinski TM. Probiotics and probiotics. J Biol Earth Sci. 2013;3:42–7.

Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: Inventory and potential applications as an aquaculture probiotic. Mar Drugs. 2010;8:1153-77.

Walsh CJ, Guinane CM, Hill C, Ross RP, O'Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol. 2015; 15:183.

O’Sullivan L, Ryan MP, Ross RP, Hill C. Generation of food grade lactococcal starters which produce the lantibiotics-lacticin 3147 and lacticin 481. Appl. Environ. Microbiol. 2003;69:3681–3685.

Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12:39–85.

Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR. The diversity of bacteriocins in gram-positive bacteria. Bacteriocins. 2007;45–92.

Venema K, Venema G, Kok J. Lactococcins: Mode of action, immunity and secretion. Int. Dairy J. 1995a;5(8):815–832.

Venema K, Venema G, Kok J. Lactococcal bacteriocins: Mode of action and immunity. Tren. Microbiol. 1995b;3(8):299–304.

Diep DB, Nes IF. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets. 2002;3:107–122.

Pag U, Sahl HG. Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des. 2002;8:815–833.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–788.

Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61: 477–501.

González-Martínez BE, Gómez-Treviño M, Jiménez-Salas Z. Bacteriocinas de probioticos.Rev Salud Publica y Nutricion. 2003;4.

Parada JL, Caron CR, Medeiros ABP, Soccol CR. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives, Braz. Arch. Biol. Technol. 2007;50:521–542.

Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 1998;30(2):317–27.

McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001a;25(3):285–308.

Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents. 2017;49(1):1–11.

Bruno ME, Kaiser A, Montville TJ. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 1992;58(7):2255-2259.

Chikindas ML, Novák J, Driessen AJ, Konings WN, Schilling KM, Caufield PW. Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob Agents Chemother. 1995;39(12):2656-60.

Ramu R, Shirahatti PS, Devi AT, Prasad A, J, K, MS, L, MN, NP. Bacteriocins and their applications in food preservation. Critical Reviews in Food Science and Nutrition; 2015.

Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis. 2019;128:171-177.

Kumariya R, Sood SK, Rajput YS, Garsa AK. Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression. Ann. Microbiol. 2015;65:721–732.

Rodriguez JM, Martinez MI, Kok J. Pediocin PA-1, a Widespectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food. Sci. Nutr. 2002;42(2):91–121.

Balla E, Dicks LM, Du Toit M, Van Der Merwe MJ, Holzapfel WH. Characteri-zation and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl. Environ. Microbiol. 2000;66(4):1298–304.

Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986;167:439-46.

Vaugan EE, Daly C, Fitzgerald GF. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol. 1992;73:299-308.

Joerger MC, Klaenhammer TR. Characteri-zation and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 1986;167(2): 439–46.

Rea MC, Ross RP, Cotter PD, Hill C. Classification of bacteriocins from gram-positive bacteria. Prokaryotic Antimicrobial Peptides. 2011;29–53.

Kaškonienė V, Stankevičius M, Bimbiraitė-Survilienė K, Naujokaitytė G, Šernienė L, Mulkytė K, Maruška A. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology. 2017;101(4):1323–1335.

Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE. Structure-function relationships of the non-lanthionine containing peptide (class II) bacteriocins produced by grampositive bacteria. Curr Pharm Biotechnol. 2009; 10:19–37.

O'Shea EF, O'Connor PM, O'Sullivan O, Cotter PD, Ross RP, Hill C. Bactofencin A, a new type of cationic bacteriocin with unusual immunity, mBio. 2013;4:e00498–e00513.

Nilsen T, Nes IF, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 2003;69(5):2975–2984.

Heng NC, Burtenshaw GA, Jack RW, Tagg JR. Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid. 2004;52(3):225–9.

Heng NCK, Swe PM, Ting YT, Dufour M, Baird HJ, Ragland NL, Burtenshaw GA, Jack RW, Tagg JR. The large antimicrobial proteins (bacteriocins) of streptococci. Interna. Congress Series. 2006;1289:351–354.

daSilva Sabo S, Vitolo M, Gonzalez JMD, De Souza Oliveira RP. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res. Int. 2014;64:527-536.

Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013;11:95–105.

Machaidze G, Seelig J. Specific binding of cinnamycin (Ro 09-0198) to phosphatidyl ethanolamine. Comparison between micellar and membrane environments. Biochemistry. 2003;42:12570–12576.

ParksWM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie. 2007;89:500–507.

Vincent PA, Morero RD. The structure and biological aspects of peptide antibiotic microcin J25. Curr. Med. Chem. 2009;16: 538–549.

Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, et al. Aaspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J. Biol. Chem. 2006;281:18033-18042.

Chen H, Hoover D. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2003;2:82–100.

Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen Meyer J. The two-peptide class II bacteriocins: Structure, production, and mode of action. J. Mol. Microbiol. Biotechnol. 2007;13: 210–219.

Kaewnopparat S, Dangmanee N, Kaewnopparat N, Srichana T, Chulasiri M, Settharaksa S. In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe. 2013;22:6–13.

Sanchez J, Diep DB, Herranz C, Nes IF, Cintas LM, Hernández PE. Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiology Letters. 2007;270(2):227–236.

Howell TH, Fiorellini JP, Blackburn P, Projan SJ, Harpe J, Williams RC. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. Journal of Clinical Periodontology. 1993;20(5):335–339.

Espitia PJP, Soares N, de FF, Teofilo RF, Coimbra JS, dos R, Vitor DM, Batista RA, Medeiros EAA. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers. 2013;94(1):199–208.

Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. Journal of Antimicrobial Chemotherapy. 2004;54(3):648–653.

Simha BV, Sood S, Kumariya R, Garsa AK. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol. Res. 2012;167:544–549.

Ross RP, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 2002;79:3–16.

FAO and WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Rome: FAO; 2006.

Sobrino-L´opez A, Mart´ın-Belloso O. Use of Nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008b;18:329–43.

Pucci MJ, Vedamuthu ER, Kunka BS, Vandenbergh PA. Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 1988; 54:2349–2353.

Cintas L, Casaus P, Fernández M, Hernández P. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 1998;15:289–298.

Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class II a bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 1998; 64:3275-3281.

Silva CCG, Silva SPM, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology. 2018;9.

Mitra S, Mukhopadhyay BC, Biswas SR. Potential application of the nisin Z preparation of Lactococcus lactis W8 in preservation of milk. Lett. Appl. Microbiol. 2011;53:98–105.

Oshima S, Hirano A, Kamikado H, Nishimura J, Kawai Y, Saito T. Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk based pudding. J. Appl. Microbiol. 2014;116:1218–1228.

Alves FCB, Barbosa LN, Andrade B, Albano M, Furtado FB, Pereira AFM, et al. Short communication: Inhibitory activities of the lantibiotic nisin combined with phenolic compounds against Staphylococcus aureus and Listeria monocytogenes in cow milk. J. Dairy Sci. 2016;99:1831–1836.

Morgan S, Galvin M, Ross R, Hill C. Evaluation of a spraydried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Lett. Appl. Microbiol. 2001;33:387–391.

Ribeiro SC, O’Connor PM, Ross RP, Stanton C, Silva CC. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int. Dairy J. 2016;63:18–28.

Yildirim Z, Öncül N, Yildirim M, Karabiyikli S¸. Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation agents. Acta Aliment. 2016;45:486–492.

Shi F, Wang YW, Li YF, Wang XY. Modeofaction of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Biotechnol. Lett. 2016; 38:1551–1557.

Arqués JL, Rodríguez E, Nuñez M, Medina M. Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control. 2011;22:457–461.

O’Mahony T, Rekhif N, Cavadini C, Fitzgerald GF. The application of a fermented food ingredient containing ‘variacin’, a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products. J. Appl. Microbiol. 2001;90:106–114.

Arakawa K, Kawai Y, Iioka H, Tanioka M, Nishimura J, Kitazawa H, et al. Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation. J. Dairy Sci. 2009;92:2365–2372.

Fagundes PC, De Farias FM, Da Silva Santos OC, Da Paz JAS, Ceotto Vigoder H, Alviano DS, et al. The four-component aureocin A 70 as a promising agent for food biopreservation. Int. J. Food Microbiol. 2016;237:39-46.

Lauková A, Vlaemynck G, Czikkova S. Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol. 2001;46:157–160.

Muñoz A, Ananou S, Gálvez A, Martínez-Bueno M, Rodríguez A, Maqueda M, et al. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. Int. Dairy J. 2007;17: 760–769.

Acuña L, Corbalan NS, Fernandez-No IC, Morero RD, Barros Velazquez J, Bellomio A. Inhibitory effect of the hybrid bacteriocin Ent35-MccV on the growth of Escherichia coli and Listeria monocy to genes in model and food systems. Food Bioproc. Technol. 2015;8:1063–1075.

Ribeiro SC, Ross RP, Stanton C, Silva CC. Characterization and application of anti listerial enterocins on model fresh cheese. J. Food Prot. 2017;80:1303–1316.

Kassaa IA, Rafei R, Moukhtar M, Zaylaa M, Gharsallaoui A, Asehraou A, hihib NE. LABiocin database: A new database designed specifically for Lactic Acid Bacteria bacteriocins. International Journal of Antimicrobial Agents. 2019;54: 771-779.

de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 2006;34:W273–79.

Mills S, Stanton C, Hill C, Ross RP. New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology. 2011;2(1):299–329

Eijlander RT, Abee T, Kuipers OP. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr. Opin. Biotechnol. 2011;22:180-186.

Zhang JC, Sun L, Nie QH. Botulism, where are we now? Clin. Toxicol. (Phila). 2010; 48:867–879.

Müller-Herbst S, Wüstner S, Mühlig A, Eder D, Fuchs TM, Held C, Ehrenreich A, Scherer S. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiol. 2014;160:752–765.

EldinMaliyakkal Johnson, Yong-Gyun Jung, Ying-Yu Jin, Rasu Jayabalan, Seung Hwan Yang, Professor Joo Won Suh. Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition. 2017;2743-2767.

Abee T, Krockel L, Hill C. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 1995;28:169–185.

De Martinis ECP, Franco BDGM. Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int. J. Food Microbiol. 1998;42(1):119–126.

Gálvez A, Abriouel H, Benomar N, Lucas R. Microbial antagonists to food-borne pathogens and 301 biocontrol. Curr Opin Biotechnol. 2010;21:142-148.

Lucera A, Costa C, Conte A, Del Nobile. MA: Food applications of natural anti-microbial 299 compounds. Front Microbiol. 2012;3:287-300.

Kashani-Haddad H, Nikzad H, Mobaseri S, Hoseini ES. Synergism effect of nisin peptide in reducing chemical preservatives in food industry. Life Sci. J. 2012;9(1): 496–501.

Yost CK. Biopreservation, Encycl. Meat Sci. 2014;76–82.

Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie. 1988;70:337– 49.

Szkaradkiewicz AK, Karpinski TM. Probiotics and probiotics. J Biol Earth Sci. 2013;3:42–7.

Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: Inventory and potential applications as an aquaculture probiotic. Mar Drugs. 2010;8:1153-77.

Walsh CJ, Guinane CM, Hill C, Ross RP, O'Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol. 2015; 15:183.

O’Sullivan L, Ryan MP, Ross RP, Hill C. Generation of food grade lactococcal starters which produce the lantibiotics-lacticin 3147 and lacticin 481. Appl. Environ. Microbiol. 2003;69:3681–3685.

Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12:39–85.

Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR. The diversity of bacteriocins in gram-positive bacteria. Bacteriocins. 2007;45–92.

Venema K, Venema G, Kok J. Lactococcins: Mode of action, immunity and secretion. Int. Dairy J. 1995a;5(8):815–832.

Venema K, Venema G, Kok J. Lactococcal bacteriocins: Mode of action and immunity. Tren. Microbiol. 1995b;3(8):299–304.

Diep DB, Nes IF. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets. 2002;3:107–122.

Pag U, Sahl HG. Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des. 2002;8:815–833.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–788.

Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61: 477–501.

González-Martínez BE, Gómez-Treviño M, Jiménez-Salas Z. Bacteriocinas de probioticos.Rev Salud Publica y Nutricion. 2003;4.

Parada JL, Caron CR, Medeiros ABP, Soccol CR. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives, Braz. Arch. Biol. Technol. 2007;50:521–542.

Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 1998;30(2):317–27.

McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001a;25(3):285–308.

Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents. 2017;49(1):1–11.

Bruno ME, Kaiser A, Montville TJ. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 1992;58(7):2255-2259.

Chikindas ML, Novák J, Driessen AJ, Konings WN, Schilling KM, Caufield PW. Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob Agents Chemother. 1995;39(12):2656-60.

Ramu R, Shirahatti PS, Devi AT, Prasad A, J, K, MS, L, MN, NP. Bacteriocins and their applications in food preservation. Critical Reviews in Food Science and Nutrition; 2015.

Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis. 2019;128:171-177.

Kumariya R, Sood SK, Rajput YS, Garsa AK. Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression. Ann. Microbiol. 2015;65:721–732.

Rodriguez JM, Martinez MI, Kok J. Pediocin PA-1, a Widespectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food. Sci. Nutr. 2002;42(2):91–121.

Balla E, Dicks LM, Du Toit M, Van Der Merwe MJ, Holzapfel WH. Characteri-zation and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl. Environ. Microbiol. 2000;66(4):1298–304.

Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986;167:439-46.

Vaugan EE, Daly C, Fitzgerald GF. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol. 1992;73:299-308.

Joerger MC, Klaenhammer TR. Characteri-zation and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 1986;167(2): 439–46.

Rea MC, Ross RP, Cotter PD, Hill C. Classification of bacteriocins from gram-positive bacteria. Prokaryotic Antimicrobial Peptides. 2011;29–53.

Kaškonienė V, Stankevičius M, Bimbiraitė-Survilienė K, Naujokaitytė G, Šernienė L, Mulkytė K, Maruška A. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology. 2017;101(4):1323–1335.

Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE. Structure-function relationships of the non-lanthionine containing peptide (class II) bacteriocins produced by grampositive bacteria. Curr Pharm Biotechnol. 2009; 10:19–37.

O'Shea EF, O'Connor PM, O'Sullivan O, Cotter PD, Ross RP, Hill C. Bactofencin A, a new type of cationic bacteriocin with unusual immunity, mBio. 2013;4:e00498–e00513.

Nilsen T, Nes IF, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 2003;69(5):2975–2984.

Heng NC, Burtenshaw GA, Jack RW, Tagg JR. Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid. 2004;52(3):225–9.

Heng NCK, Swe PM, Ting YT, Dufour M, Baird HJ, Ragland NL, Burtenshaw GA, Jack RW, Tagg JR. The large antimicrobial proteins (bacteriocins) of streptococci. Interna. Congress Series. 2006;1289:351–354.

daSilva Sabo S, Vitolo M, Gonzalez JMD, De Souza Oliveira RP. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res. Int. 2014;64:527-536.

Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013;11:95–105.

Machaidze G, Seelig J. Specific binding of cinnamycin (Ro 09-0198) to phosphatidyl ethanolamine. Comparison between micellar and membrane environments. Biochemistry. 2003;42:12570–12576.

ParksWM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie. 2007;89:500–507.

Vincent PA, Morero RD. The structure and biological aspects of peptide antibiotic microcin J25. Curr. Med. Chem. 2009;16: 538–549.

Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, et al. Aaspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J. Biol. Chem. 2006;281:18033-18042.

Chen H, Hoover D. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2003;2:82–100.

Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen Meyer J. The two-peptide class II bacteriocins: Structure, production, and mode of action. J. Mol. Microbiol. Biotechnol. 2007;13: 210–219.

Kaewnopparat S, Dangmanee N, Kaewnopparat N, Srichana T, Chulasiri M, Settharaksa S. In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe. 2013;22:6–13.

Sanchez J, Diep DB, Herranz C, Nes IF, Cintas LM, Hernández PE. Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiology Letters. 2007;270(2):227–236.

Howell TH, Fiorellini JP, Blackburn P, Projan SJ, Harpe J, Williams RC. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. Journal of Clinical Periodontology. 1993;20(5):335–339.

Espitia PJP, Soares N, de FF, Teofilo RF, Coimbra JS, dos R, Vitor DM, Batista RA, Medeiros EAA. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers. 2013;94(1):199–208.

Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. Journal of Antimicrobial Chemotherapy. 2004;54(3):648–653.

Simha BV, Sood S, Kumariya R, Garsa AK. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol. Res. 2012;167:544–549.

Ross RP, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 2002;79:3–16.

FAO and WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Rome: FAO; 2006.

Sobrino-L´opez A, Mart´ın-Belloso O. Use of Nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008b;18:329–43.

Pucci MJ, Vedamuthu ER, Kunka BS, Vandenbergh PA. Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 1988; 54:2349–2353.

Cintas L, Casaus P, Fernández M, Hernández P. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 1998;15:289–298.

Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class II a bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 1998; 64:3275-3281.

Silva CCG, Silva SPM, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology. 2018;9.

Mitra S, Mukhopadhyay BC, Biswas SR. Potential application of the nisin Z preparation of Lactococcus lactis W8 in preservation of milk. Lett. Appl. Microbiol. 2011;53:98–105.

Oshima S, Hirano A, Kamikado H, Nishimura J, Kawai Y, Saito T. Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk based pudding. J. Appl. Microbiol. 2014;116:1218–1228.

Alves FCB, Barbosa LN, Andrade B, Albano M, Furtado FB, Pereira AFM, et al. Short communication: Inhibitory activities of the lantibiotic nisin combined with phenolic compounds against Staphylococcus aureus and Listeria monocytogenes in cow milk. J. Dairy Sci. 2016;99:1831–1836.

Morgan S, Galvin M, Ross R, Hill C. Evaluation of a spraydried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Lett. Appl. Microbiol. 2001;33:387–391.

Ribeiro SC, O’Connor PM, Ross RP, Stanton C, Silva CC. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int. Dairy J. 2016;63:18–28.

Yildirim Z, Öncül N, Yildirim M, Karabiyikli S¸. Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation agents. Acta Aliment. 2016;45:486–492.

Shi F, Wang YW, Li YF, Wang XY. Modeofaction of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Biotechnol. Lett. 2016; 38:1551–1557.

Arqués JL, Rodríguez E, Nuñez M, Medina M. Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control. 2011;22:457–461.

O’Mahony T, Rekhif N, Cavadini C, Fitzgerald GF. The application of a fermented food ingredient containing ‘variacin’, a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products. J. Appl. Microbiol. 2001;90:106–114.

Arakawa K, Kawai Y, Iioka H, Tanioka M, Nishimura J, Kitazawa H, et al. Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation. J. Dairy Sci. 2009;92:2365–2372.

Fagundes PC, De Farias FM, Da Silva Santos OC, Da Paz JAS, Ceotto Vigoder H, Alviano DS, et al. The four-component aureocin A 70 as a promising agent for food biopreservation. Int. J. Food Microbiol. 2016;237:39-46.

Lauková A, Vlaemynck G, Czikkova S. Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol. 2001;46:157–160.

Muñoz A, Ananou S, Gálvez A, Martínez-Bueno M, Rodríguez A, Maqueda M, et al. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. Int. Dairy J. 2007;17: 760–769.

Acuña L, Corbalan NS, Fernandez-No IC, Morero RD, Barros Velazquez J, Bellomio A. Inhibitory effect of the hybrid bacteriocin Ent35-MccV on the growth of Escherichia coli and Listeria monocy to genes in model and food systems. Food Bioproc. Technol. 2015;8:1063–1075.

Ribeiro SC, Ross RP, Stanton C, Silva CC. Characterization and application of anti listerial enterocins on model fresh cheese. J. Food Prot. 2017;80:1303–1316.

Kassaa IA, Rafei R, Moukhtar M, Zaylaa M, Gharsallaoui A, Asehraou A, hihib NE. LABiocin database: A new database designed specifically for Lactic Acid Bacteria bacteriocins. International Journal of Antimicrobial Agents. 2019;54: 771-779.

de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 2006;34:W273–79.

Mills S, Stanton C, Hill C, Ross RP. New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology. 2011;2(1):299–329

Eijlander RT, Abee T, Kuipers OP. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr. Opin. Biotechnol. 2011;22:180-186.

Zhang JC, Sun L, Nie QH. Botulism, where are we now? Clin. Toxicol. (Phila). 2010; 48:867–879.

Müller-Herbst S, Wüstner S, Mühlig A, Eder D, Fuchs TM, Held C, Ehrenreich A, Scherer S. Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiol. 2014;160:752–765.

EldinMaliyakkal Johnson, Yong-Gyun Jung, Ying-Yu Jin, Rasu Jayabalan, Seung Hwan Yang, Professor Joo Won Suh. Bacteriocins as food preservatives: Challenges and emerging horizons. Critical Reviews in Food Science and Nutrition. 2017;2743-2767.

Abee T, Krockel L, Hill C. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 1995;28:169–185.

De Martinis ECP, Franco BDGM. Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int. J. Food Microbiol. 1998;42(1):119–126.

Gálvez A, Abriouel H, Benomar N, Lucas R. Microbial antagonists to food-borne pathogens and 301 biocontrol. Curr Opin Biotechnol. 2010;21:142-148.

Lucera A, Costa C, Conte A, Del Nobile. MA: Food applications of natural anti-microbial 299 compounds. Front Microbiol. 2012;3:287-300.

Kashani-Haddad H, Nikzad H, Mobaseri S, Hoseini ES. Synergism effect of nisin peptide in reducing chemical preservatives in food industry. Life Sci. J. 2012;9(1): 496–501.

Yost CK. Biopreservation, Encycl. Meat Sci. 2014;76–82.

Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie. 1988;70:337– 49.

Szkaradkiewicz AK, Karpinski TM. Probiotics and probiotics. J Biol Earth Sci. 2013;3:42–7.

Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: Inventory and potential applications as an aquaculture probiotic. Mar Drugs. 2010;8:1153-77.

Walsh CJ, Guinane CM, Hill C, Ross RP, O'Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol. 2015; 15:183.

O’Sullivan L, Ryan MP, Ross RP, Hill C. Generation of food grade lactococcal starters which produce the lantibiotics-lacticin 3147 and lacticin 481. Appl. Environ. Microbiol. 2003;69:3681–3685.

Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12:39–85.

Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR. The diversity of bacteriocins in gram-positive bacteria. Bacteriocins. 2007;45–92.

Venema K, Venema G, Kok J. Lactococcins: Mode of action, immunity and secretion. Int. Dairy J. 1995a;5(8):815–832.

Venema K, Venema G, Kok J. Lactococcal bacteriocins: Mode of action and immunity. Tren. Microbiol. 1995b;3(8):299–304.

Diep DB, Nes IF. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets. 2002;3:107–122.

Pag U, Sahl HG. Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des. 2002;8:815–833.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–788.

Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61: 477–501.

González-Martínez BE, Gómez-Treviño M, Jiménez-Salas Z. Bacteriocinas de probioticos.Rev Salud Publica y Nutricion. 2003;4.

Parada JL, Caron CR, Medeiros ABP, Soccol CR. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives, Braz. Arch. Biol. Technol. 2007;50:521–542.

Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 1998;30(2):317–27.

McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001a;25(3):285–308.

Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents. 2017;49(1):1–11.

Bruno ME, Kaiser A, Montville TJ. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 1992;58(7):2255-2259.

Chikindas ML, Novák J, Driessen AJ, Konings WN, Schilling KM, Caufield PW. Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob Agents Chemother. 1995;39(12):2656-60.

Ramu R, Shirahatti PS, Devi AT, Prasad A, J, K, MS, L, MN, NP. Bacteriocins and their applications in food preservation. Critical Reviews in Food Science and Nutrition; 2015.

Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis. 2019;128:171-177.

Kumariya R, Sood SK, Rajput YS, Garsa AK. Gradual pediocin PA-1 resistance in Enterococcus faecalis confers cross-protection to diverse pore-forming cationic antimicrobial peptides displaying changes in cell wall and mannose PTS expression. Ann. Microbiol. 2015;65:721–732.

Rodriguez JM, Martinez MI, Kok J. Pediocin PA-1, a Widespectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food. Sci. Nutr. 2002;42(2):91–121.

Balla E, Dicks LM, Du Toit M, Van Der Merwe MJ, Holzapfel WH. Characteri-zation and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl. Environ. Microbiol. 2000;66(4):1298–304.

Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986;167:439-46.

Vaugan EE, Daly C, Fitzgerald GF. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol. 1992;73:299-308.

Joerger MC, Klaenhammer TR. Characteri-zation and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 1986;167(2): 439–46.

Rea MC, Ross RP, Cotter PD, Hill C. Classification of bacteriocins from gram-positive bacteria. Prokaryotic Antimicrobial Peptides. 2011;29–53.

Kaškonienė V, Stankevičius M, Bimbiraitė-Survilienė K, Naujokaitytė G, Šernienė L, Mulkytė K, Maruška A. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Applied Microbiology and Biotechnology. 2017;101(4):1323–1335.

Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE. Structure-function relationships of the non-lanthionine containing peptide (class II) bacteriocins produced by grampositive bacteria. Curr Pharm Biotechnol. 2009; 10:19–37.

O'Shea EF, O'Connor PM, O'Sullivan O, Cotter PD, Ross RP, Hill C. Bactofencin A, a new type of cationic bacteriocin with unusual immunity, mBio. 2013;4:e00498–e00513.

Nilsen T, Nes IF, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 2003;69(5):2975–2984.

Heng NC, Burtenshaw GA, Jack RW, Tagg JR. Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid. 2004;52(3):225–9.

Heng NCK, Swe PM, Ting YT, Dufour M, Baird HJ, Ragland NL, Burtenshaw GA, Jack RW, Tagg JR. The large antimicrobial proteins (bacteriocins) of streptococci. Interna. Congress Series. 2006;1289:351–354.

daSilva Sabo S, Vitolo M, Gonzalez JMD, De Souza Oliveira RP. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res. Int. 2014;64:527-536.

Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013;11:95–105.

Machaidze G, Seelig J. Specific binding of cinnamycin (Ro 09-0198) to phosphatidyl ethanolamine. Comparison between micellar and membrane environments. Biochemistry. 2003;42:12570–12576.

ParksWM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie. 2007;89:500–507.

Vincent PA, Morero RD. The structure and biological aspects of peptide antibiotic microcin J25. Curr. Med. Chem. 2009;16: 538–549.

Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, et al. Aaspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J. Biol. Chem. 2006;281:18033-18042.

Chen H, Hoover D. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2003;2:82–100.

Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen Meyer J. The two-peptide class II bacteriocins: Structure, production, and mode of action. J. Mol. Microbiol. Biotechnol. 2007;13: 210–219.

Kaewnopparat S, Dangmanee N, Kaewnopparat N, Srichana T, Chulasiri M, Settharaksa S. In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe. 2013;22:6–13.

Sanchez J, Diep DB, Herranz C, Nes IF, Cintas LM, Hernández PE. Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiology Letters. 2007;270(2):227–236.

Howell TH, Fiorellini JP, Blackburn P, Projan SJ, Harpe J, Williams RC. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. Journal of Clinical Periodontology. 1993;20(5):335–339.

Espitia PJP, Soares N, de FF, Teofilo RF, Coimbra JS, dos R, Vitor DM, Batista RA, Medeiros EAA. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers. 2013;94(1):199–208.

Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. Journal of Antimicrobial Chemotherapy. 2004;54(3):648–653.

Simha BV, Sood S, Kumariya R, Garsa AK. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol. Res. 2012;167:544–549.

Ross RP, Morgan S, Hill C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 2002;79:3–16.

FAO and WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Rome: FAO; 2006.

Sobrino-L´opez A, Mart´ın-Belloso O. Use of Nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008b;18:329–43.

Pucci MJ, Vedamuthu ER, Kunka BS, Vandenbergh PA. Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 1988; 54:2349–2353.

Cintas L, Casaus P, Fernández M, Hernández P. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 1998;15:289–298.

Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF. Comparative studies of class II a bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 1998; 64:3275-3281.

Silva CCG, Silva SPM, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology. 2018;9.

Mitra S, Mukhopadhyay BC, Biswas SR. Potential application of the nisin Z preparation of Lactococcus lactis W8 in preservation of milk. Lett. Appl. Microbiol. 2011;53:98–105.

Oshima S, Hirano A, Kamikado H, Nishimura J, Kawai Y, Saito T. Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk based pudding. J. Appl. Microbiol. 2014;116:1218–1228.

Alves FCB, Barbosa LN, Andrade B, Albano M, Furtado FB, Pereira AFM, et al. Short communication: Inhibitory activities of the lantibiotic nisin combined with phenolic compounds against Staphylococcus aureus and Listeria monocytogenes in cow milk. J. Dairy Sci. 2016;99:1831–1836.

Morgan S, Galvin M, Ross R, Hill C. Evaluation of a spraydried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Lett. Appl. Microbiol. 2001;33:387–391.

Ribeiro SC, O’Connor PM, Ross RP, Stanton C, Silva CC. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int. Dairy J. 2016;63:18–28.

Yildirim Z, Öncül N, Yildirim M, Karabiyikli S¸. Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation agents. Acta Aliment. 2016;45:486–492.

Shi F, Wang YW, Li YF, Wang XY. Modeofaction of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Biotechnol. Lett. 2016; 38:1551–1557.

Arqués JL, Rodríguez E, Nuñez M, Medina M. Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control. 2011;22:457–461.

O’Mahony T, Rekhif N, Cavadini C, Fitzgerald GF. The application of a fermented food ingredient containing ‘variacin’, a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products. J. Appl. Microbiol. 2001;90:106–114.

Arakawa K, Kawai Y, Iioka H, Tanioka M, Nishimura J, Kitazawa H, et al. Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation. J. Dairy Sci. 2009;92:2365–2372.

Fagundes PC, De Farias FM, Da Silva Santos OC, Da Paz JAS, Ceotto Vigoder H, Alviano DS, et al. The four-component aureocin A 70 as a promising agent for food biopreservation. Int. J. Food Microbiol. 2016;237:39-46.

Lauková A, Vlaemynck G, Czikkova S. Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol. 2001;46:157–160.

Muñoz A, Ananou S, Gálvez A, Martínez-Bueno M, Rodríguez A, Maqueda M, et al. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. Int. Dairy J. 2007;17: 760–769.

Acuña L, Corbalan NS, Fernandez-No IC, Morero RD, Barros Velazquez J, Bellomio A. Inhibitory effect of the hybrid bacteriocin Ent35-MccV on the growth of Escherichia coli and Listeria monocy to genes in model and food systems. Food Bioproc. Technol. 2015;8:1063–1075.

Ribeiro SC, Ross RP, Stanton C, Silva CC. Characterization and application of anti listerial enterocins on model fresh cheese. J. Food Prot. 2017;80:1303–1316.

Kassaa IA, Rafei R, Moukhtar M, Zaylaa M, Gharsallaoui A, Asehraou A, hihib NE. LABiocin database: A new database designed specifically for Lactic Acid Bacteria bacteriocins. International Journal of Antimicrobial Agents. 2019;54: 771-779.

de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP. BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 2006;34:W273–79.

Mills S, Stanton C, Hill C, Ross RP. New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology. 2011;2(1):299–329