OPTIMIZATION OF EMS AND DES TREATMENTS FOR INDUCTION OF MUTATIONS IN QUANTITATIVE TRAITS OF MAIZE

Main Article Content

RAFIUL AMIN LASKAR
NILOFER SHEIKH
SUBARNA HAJONG
TAJ UDDIN KHAN

Abstract

In chemical mutagenesis experiment, LC50 value indicates genotypic sensitivity of a species which facilitates fixing optimal concentrations of mutagens for obtaining higher rate of mutations with nominal population damage. The present study was undertaken in two separate steps where initially the lethal concentration (LC50) value of EMS and DES was calculated and finally the mutations induced through the identified concentrations were quantitatively analysed for yield traits of an indigenous maize germplasm of Mizoram. The probit curve analysis based on the germination percentage of treated maize seeds revealed that LC50 values of EMS and DES to be 117.49 mM and 138.04 mM, respectively. The observations on quantitative traits showed that the LC50 treatments successfully induced significant desirable genetic variations, including maximum improvement of average grain (93.41 g) and stover (198.16 g) yield in 100 mM EMS treatment. The results confirmed relatively higher efficacy of EMS in induction of useful micro-mutations compared to DES at their respective optimum concentrations in the maize germplasm under present study. In conclusion, the study confirmed and recommends the application of EMS and DES concentrations up to the optimum 100 mM and 150 mM, respectively for generating broad spectrum of mutations in quantitative yield traits that could be useful in future mutation breeding programmes of indigenous maize germplasms of Mizoram.

Keywords:
Zea mays L, chemical mutagenesis, optimum concentrations, probit analysis, quantitative traits, indigenous germplasm.

Article Details

How to Cite
LASKAR, R. A., SHEIKH, N., HAJONG, S., & KHAN, T. U. (2020). OPTIMIZATION OF EMS AND DES TREATMENTS FOR INDUCTION OF MUTATIONS IN QUANTITATIVE TRAITS OF MAIZE. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(43-44), 134-143. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/5484
Section
Original Research Article

References

Liu J, Fernie AR, Yan J. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Plant Comm. 2020;1:100010.

Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013;14:1-18.

Kumari M, Meena LM, Singh RG. Problems and prospects of maize crop in eastern zone of Bihar. International Journal of Agricultural Science and Research. 2015;5(2):137-146.

Singh AR, Devi EL, Dayal V, Saha S, Lungmauna, Dutta SK, Boopathi T, Singh SB. Diversity of Landraces Maize in Mizoram: Prospect, Challenges and Opportunities. In: National workshop on Scientific Maize Cultivation in North East India, Aizawll 2019.

Yadav OP, Hossain F, Karjagi CG, Kumar B, Zaidi PH, Jat SL, Chawla JS, Kaul J, Hooda KS, Kumar P, Yadava P, Dhillon BS. Genetic Improvement of Maize in India: Retrospect and Prospects. Agricultural Research. 2015;4(4):325-338.

Raina A, Laskar RA, Wani MR, Khursheed S, Khan S. Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Scientific Reports (Nature). 2019;10(3687):1-22. Available:https://doi.org/10.1038/s41598-020-60601-6

Khan H, Laskar RA, Khan S. Comparative estimation of induced cytotoxicity and mutagenic potency of EMS and SA using Vicia faba L. as a biological system. In: Advances in Plant Sciences and Biotechnology. (eds.) S. Krishnan & B. F. Rodrigues, Goa University. 2015;172-186. ISBN: 978-81- 908791-4-9

Gupta N, Sood S, Singh Y, Sood D. Determination of lethal dose for gamma rays and ethyl methane sulphonate induced mutagenesis in Okra (Abelmoschus esculentus (L.) Moench.). SABRAO Journal of Breeding & Genetics. 2016;48(4):344-351.

Sikder S, Basfore B. Study the effect of ethyl methane sulphonate (EMS) on widely divergent cultivars of tomato. J Agric Technol. 2016;3(2):45-49.

Surakshithaa NC, Soorianathasundarama K, Meenakshi ganesanb N. Determination of mutagenic sensitivity of hardwood cuttings of grapes ‘Red Globe’ and ‘Muscat’ (Vitis vinifera L.) to gamma rays. Scientia Horticulturae. 2017;226:152–156.

Bagherikia S, Pahlevani M H, Yamchi A, Zenalinezhad K. Probit analysis to determine of the most appropriate dose of gamma irradiation in wheat mutation breeding. Journal of Crop Breeding. 2018:10(25):158-165.

Tabti D, Laouar M, Rajendran K, Kumar S, Abdelguerfi A. Identification of desirable mutants in quantitative traits of lentil at early (M1) generation. Journal of Environmental Biology. 2018;39:137-142.

Prasath G, Irene Vethamoni P, Balasubramanian P, Vanniarajan C, Souframanien J, Senthil N and Hemalatha G. Effect of mutagenesis on germination, plant survival, pollen sterility and seed sterility in m1 generation of cluster bean (Cyamopsis tetragonaloba L.) variety MDU 1. Journal of Pharmacognosy and Phytochemistry. 2019;8(3):3502-3507.

Sandhiya V, Kumar M, Parameswari C, Vanniarajan C, Kumaravadivel N, Sakthivel N, Bad M. Determination of optimum dose of chemical mutagen for large sc treatment of white seeded sesame (Sesamum indicum L.) varieties. Electronic Journal of Plant Breeding. 2020;11(1):238-242.

Jency JP, Rajasekaran R, Singh RK, Muthurajan R, Prabhakaran J, Mehanathan M, Prasad M, Ganesan J. Induced mutagenesis enhances lodging resistance and photosynthetic efficiency of kodomillet (Paspalum scrobiculatum). Agronomy. 2020;10:227.

Kharkwal MC. Induced mutations in chickpea (Cicer arientinum L.) III. Frequency and spectrum of viable mutations. Indian J Genet. 1999;59:451-464.

Bhat TA, Khan AH, Parveen S. Comparative analysis of meiotic abnormalities induced by gamma rays, EMS and MMS in Vicia faba L. Indian Bot Soc, 2005;84:45–58.

Dixit V, Prabha R, Chaudhary BR. Effects of EMS and SA on meiotic cells and thymoquinone content of Nigella sativa L. cultivars. Caryologia. 2013;66(2):178-185.

Kim Y, Schumaker KS, Zhu JK. EMS Mutagenesis of Arabidopsis. In: Salinas J., Sanchez-Serrano J.J. (eds) Arabidopsis Protocols. Methods in Molecular Biology™, vol 323. Humana Press; 2006. Available:https://doi.org/10.1385/1-59745-003-0:101

Laskar RA, Khan S, Deb CR, Tomlekova N, Wani MR, Raina A, Amin R. Lentil (Lens culinaris Medik.) Diversity, Cytogenetics and Breeding. In: Advances in Plant Breeding Strategies: Cereals and Legumes. (eds.) J. M. Al-Khayri, S. M. Jain and D. V. Johnson. Springer International Publishing. 2019;319-370. ISBN 978-3-030-23399-0.

Laskar RA, Amin R, Khan S. Evaluation of optimal doses for gamma rays and hydrazine hydrates in lentil genotypes. Trends in Biosciences. 2017;10(27):5822-5825.

Finney DJ. Probit analysis (3rd edition) Cambridge University Press, Cambridge, UK; 1971.

Finney DJ. Statistical method in biological assay. Charles Griffin & Co; 1978.

Finney DJ, ed. Probit Analysis. Cambridge University Press, Cambridge, UK; 1952

Duncan DB. Multiple range and multiple F tests. Biometrics. 1955;11:1-42.

Ramchander S, Ushakumari R, Pillai MA. Lethal dose fixation and sensitivity of rice varieties to gamma radiation. Indian J. Agric. Res. 2015;49(1):24-31. DOI: 10.5958/0976-058X.2015.00003.7

Rajarajan D, Saraswathi R, Sassikumar D. Determination of lethal dose and effect of gamma ray on germination percentage and seedling parameters in ADT (R) 47 rice. I.J.A.B.R. 2016;6(2):328-332.

Veni K, Vanniarajan C, Souframanien J. Probit analysis and effect of electron beam and gamma rays in blackgram (Vigna mungo (L.) Hepper). Electronic Journal of Plant Breeding. 2017;8(3):950-955. DOI: 10.5958/0975-928X.2017.00112.0

Ghosh S, Ganga M. Determination of lethal dose for ethyl methane sulphonate induced mutagenesis in Jasmine. Chem. Sci. Rev. Lett. 2019;8(29):06-10.

Sikora P, Chawade A, Larsson M, Olsson J, Olsson O. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics; 2011. Available:https://doi.org/10.1155/2011/314829

Suprasanna P, Mirajkar SJ, Bhagwat SG. Induced mutations and crop improvement. In: Bahadur B., Venkat Rajam M., Sahijram L., Krishnamurthy K. (eds) Plant Biology and Biotechnology. Springer, New Delhi; 2015. Available:https://doi.org/10.1007/978-81-322-2286-6_23

Laskar RA, Khan S. Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLoS ONE. 2017;12(9):e0184598.

Gnanamurthy S, Dhanavel D, Girija M. Studies on induced chemical mutagenesis in maize (Zea mays L.). International Journal of Current Research. 2011;3(11):037-040.

Aslam M, Saeed MS, Sattar S, Rehan M, Sajjad M. Result of chemical mutagenesis on quantitative as well as qualitative traits of maize (Zea mays (L.), Int. J. Pure App. Biosci. 2018;6(1):12-15.