ISOLATION OF DARK SEPTATE ENDOPHYTIC FUNGI FROM Vinca GENUS

Main Article Content

ABDULMYANOVA LILIYA
GULYAMOVA TOSHHON
RUZIEVA DILOROM
NASMETOVA SAODAT
KARIMOVA FERUZA

Abstract

The dark pigment's production and properties by four strains of dark-septate endophytic fungi, isolated from leafs and roots of various plants of the Vinca genus growing in the territory of Uzbekistan are investigated. Selected strains produced high amounts of dark pigment, accounting for 20-40% of the total fungal biomass in submerged (Czapek-Dox) and solid-state (oat and wheat bran) fermentation, from the dry biomass of the most productive strain Sclerotium minorum - VM83R dark pigment obtained. Extracted pigment is preliminarily identified as melanin by its physical and chemical properties.

Keywords:
Dark-septate endophytic fungi, plants of the Vinca genus, melanin pigments, submerged and solid-state fermentation.

Article Details

How to Cite
LILIYA, A., TOSHHON, G., DILOROM, R., SAODAT, N., & FERUZA, K. (2020). ISOLATION OF DARK SEPTATE ENDOPHYTIC FUNGI FROM Vinca GENUS. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(55-56), 23-32. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/5587
Section
Original Research Article

References

He C, Wang W, Hou J. Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Front. Microbiol. 2019;10:1364.

Zhan F, He Y, Zu Y, Li T, Zhao Z. Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World J Microbiol Biotechnol. 2011;27(10):2483–2489.

Jumpponen A. Dark septate endophytes – are they mycorrhizal? Mycorrhiza. 2001;11:207–211.

Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: A meta-analysis. Mycorrhiza. 2013;23:119–128.

Zhang HH, Tang M, Chen H, Wang YJ, Ban YH. Arbuscular mycorrhizas and dark septate endophytes colonization status in medicinal plant Lycium barbarum L. in arid Northwestern China. Afr. J. Microbiol. Res. 2010;4:1914–1920.

Wu LQ, Guo SX. Interaction between an isolate of dark septate fungi and its host plant Saussurea involucrata. Mycorrhiza. 2008;18:79–85.

Vergara C, Araujo KEC, Urquiaga S, Schultz N, Balieiro FC, Medeiros PS, et al. Dark septate endophytic fungi help tomato to acquire nutrients from ground plant material. Front. Microbiol. 2017;8:2437.

Surono, Narisawa K. The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of asparagus officinalis growth. Fungal Ecol. 2017;28:1–10.

Zhang HH, Tang M, Chen H, Wang YJ. Effects of a dark septate endophytic isolate LBF-2 on the medicinal plant Lycium barbarum L. J. Microbiol. 2012;50:91– 96.

Likar M, Regvar M. Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil. 2013;370:593–604.

Santos SGD, Silva PRAD, Garcia AC, Zilli JÉ, Berbara RLL. Dark septate endophyte decreases stress on rice plants. Braz. J. Microbiol. 2017;48:333–341.

Sandra R. Pombeiro-Sponchiado, Gabriela S. Sousa, Jazmina C. R. Andrade, Helen F. Lisboa, Rita C. R. Gonçalves. Production of melanin pigment by fungi and its biotechnological applications. 2017; Chapter 4:47-75.

Plonka PM, Grabacka M. Melanin synthesis in microorganisms-biotechnological and medical aspects. Acta Biochim Pol. 2006;53:429–443.
PMID: 16951740

Butler MJ, Day AW. Fungal melanins: A review. Can J Microbiol. 1998;44(12): 1115–1136.

Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, et al. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One. 2007;2(5):1–13.

Gessler NN, Egorova AS, Belozerskaya TA. Melanin pigments of fungi under extreme environmental conditions (Review). Appl Biochem Microbiol. 2014;50(2):105–113.

d’Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, et al. Melanins and melanogenesis: From pigment cells to human health and technological applications. Pigment Cell Melanoma Res. 2015;28(5):520–544.

da Costa Souza PN, Grigoletto TLB, de Moraes LAB, Abreu LM, Guimarães LHS, Santos CR, et al. Production and chemical characterization of pigments in filamentous fungi. Microbiology. 2015;162: 12–22.

Huang L, Liu M, Huang H, Wen Y, Zhang X, Wei Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules. 2018;19: 1858–1868.

Pal AK, Gajjar DU, Vasavada AR. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol. 2014;52:10−18.

Liu DH, Wei L, Guo T. Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. PLoS One. 2014;9:e92610.

Zou Y, Hou X. Optimization of culture medium for production of melanin by Auricularia auricular. Food Sci Technol. 2017;37:153–157.

Hou R, Liu X, Xiang K, Chen L, Wu X, Lin W, Zheng M. Fu J. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chem. 2019;277:533–542.

Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I. Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolated from Northeastern Poland. PLoS One. 2015;10:e0125428.

Goncёalves RCR, Lisboa HCF, Pomberiro-Sponchiado SR. Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol. 2012;28:1467–1474.

D’Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron JC, Kovacs D, et al. Melanins and melanogenesis: Methods, standards, protocols. Pigment Cell Melanoma Res. 2013;26(5):616–633.

Suwannarach N, Kumla J, Watanabe B, Matsui K, Lumyong S. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus Spissiomyces endophytica SDBR-CMU319. PLoS ONE. 2019;14(9):e0222187.

Zhan F, He Y, Zu Y, Li T, Zhao Zhiwei. Characterization of melanin isolated from a dark septate endophyte (DSE) Exophiala pisciphila. World Journal of Microbiology and Biotechnology. 2011;27:2483– 2489.

Panesar R, Kaur S, Panesar PS. Production of microbial pigments utilizing agro-industrial waste: A review. Curr Opin Food Sci. 2015;1:70–76.

Hazalin NA, Ramasamy K, Lim SM, Wahab IA, Cole ALJ, Majeed AA. Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia. BMC Complementary and Alternative Medicine. 2009;9:46.

Litvinov MA. Identification guide for microscopic fungi. Nauka, Leningrad; 1967.

Barrios-Gonzales J, Miranda RU. Biotechnological production and applications of statins. Appl Microbiol Biotechnol. 2010;85(4):869-83.

De la Rosa JM, Martin-Sanchez PM, Sanchez-Cortes S, Hermosin B, Knicker H, Saiz-Jimenez C. Structure of melanins from the fungi Ochroconis lascauxensis and Ochroconis anomala contaminating rock art in the Lascaux Cave. Sci Rep. 2017;7:13441.

Rajagopal K, Kathiravan G, Karthikeyan S. Extraction and characterization of melanin from Phomopsis: A phellophytic fungi isolated from Azadirachta indica A. Juss. Afr J Microbiol Res. 2011;5:762−766.

Selvakumar P, Rajasekar S, Periasamy K, Raaman N. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World J Microbiol Biotechnol. 2008;24(10):2125–2131.

Thomas M. Modern methods of plant analysis. In: Paech K, Tracey MV (Eds) Melanin, Springer, Verlag, Berlin. 1955;4:661–675.

Ghadge V, Kumar P, Singh S, Mathew DE, Bhattacharya S, Nimse SB, Shinde PB. Natural melanin produced by the endophytic Bacillus subtilis 4NP-BL associated with the Halophyte Salicornia brachiate. J. Agric. Food Chem. 2020;68(25):6854–6863.