BIOMASS AND BIOCHEMICAL COMPOSITION OF Chlorella Sp AND Scenedesmus apiculatus IN CULTURE

PDF

Published: 2020-12-31

Page: 30-40


BOUCHELTA YAMNA

Laboratory of Biotechnology and Conservation and Development of Natural Resources, Faculty of Science Dhar el Mahraz, University of Sidi Mohamed Ben Abdellah, Fès, Morocco

ALLALI AIMAD *

Laboratory of Plant, Animal and Agro-industry Productions, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco

REZOUKI SANAE

Laboratory of Plant, Animal and Agro-industry Productions, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco

BELHASSAN HAJAR

Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco

*Author to whom correspondence should be addressed.


Abstract

Microalgae are photosynthetic microorganisms with great potentialities that can be used in several fields. In Morocco, the microalgae sector is very little developed; it is mainly based on the exploitation of the raw material. For better exploitation of the benefits of microalgae, a study of the biochemical composition of two species, Chlorella sp and Scenedesmus apiculatus was carried out according to growth stages.

Our results show that protein in Chlorella sp can register 19.97% against 1.85% for Scenedesmus apiculatus, carbohydrates Chlorella sp still registers the highest value 5.78% against 0.33% for Scenedesmus apiculatus About lipids Chlorella sp has the highest content 0.31% against 0.11% for Scenedesmus apiculatus. Therefore, both strains are of interest to the food and pharmaceutical industries and constitute a vegetarian alternative with high dietary value to currently consumed products.

Keywords: Microalgae, proteins, carbohydrates, lipids, growth phase.


How to Cite

YAMNA, B., AIMAD, A., SANAE, R., & HAJAR, B. (2020). BIOMASS AND BIOCHEMICAL COMPOSITION OF Chlorella Sp AND Scenedesmus apiculatus IN CULTURE. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 21(71-72), 30–40. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/5753

Downloads

Download data is not yet available.

References

Doré-Deschênes F. Utilisation des microalgues comme source D’énergie durable; Université de Sherbrooke: Québec, QC, Canada; 2009.

Andersen RA. Diversity of eukaryotic algae. Biodiversity and Conservation. 1992; 1(4):267–292.

ElMtili N, FakihiKachkach FZ. et El Harchi M. Les algues marines: Nouvelle potentialité économique pour le Maroc. Quelle stratégie biotechnologique. Cahiers UAE. 2013;8-9:1-7

Phatarpekar P, Sreepada R, Pednekar C, Achuthankutty C. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture. 2000;181(1–2):141–155.

Mat Aron NS, Khoo KS, Chew KW, Veeramuthu A, Chang JS, Show PL. Show, microalgae cultivation in wastewater and potential processing strategies using solvent and membrane separation technologies, J. Water Process. Eng. 2020;101701.

Blancheton Jean-Paul. Production d'Algues unicellulaires. Dossier Technique D’isolement- Rapport. 1986;1749:13.

Dos Santos M, Martins MA, Coimbra DJS, Gates RS, Corrêdo LP. Rheological behavior of Chlorella sp. e Scenedesmus sp. cultures in different biomass concentrations, Eng. Agríc. Jaboticabal, 2013;33(5):1063-1071.

Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. Protein measurment with the folin phenol regent. J. biol. Chem. 1951; 193:265-275.

Dubois M, Gilles KA, Hamilton JK, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350- 356.

Folch J, Lebaron FN. La chimie des phosphoinositides. Can J Biochem Physiol. 1956;34:305-19.

Morris I. Photosynthetic products, physiological state, and phytoplankton growth. In Physiological bases of Phytoplankton Ecology. Piatt T. (Éd.), Can. Bull. Fish. Aquat. Sci. 1981;210:83-102.

Belkoura M, Benider A, Influence de la température, de l'intensité lumineuse et du stade de croissance sur la composition biochimique de Chlorella sorokiniana Shihira and Krauss. Annls Limnol. 1997; 33(1):3-11.

Tahiri M, Benider A, Belkoura M, Dauta A. Caractérisation biochimique de l'algue verte Scenedesmus abundans: influence des conditions de culture- Annls Limnol. 2000; 36(1):3-12.

Yoo YD, Jeong HJ, Kang NS, Song JY, Kim KY, Lee KT, Kim JH. Feeding by the newly described mixotrophic dinoflagellate Para gymnodinium shiwhaense: Feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 2010;57:145–158.

Cassidy, Keelin Owen. Evaluating algal growth at different temperatures. Theses and Dissertations-- Biosystems and Agricultural Engineering. 2011;3.

Aurore Villay. Production en photobioréacteurs et caractérisation structurale d’un exopolysaccharide produit par une microalgue rouge, Rhodella violacea: Application à l’obtention d’actifs antiparasitaires. Alimentation et Nutrition-. Université Blaise Pascal - Clermont-Ferrand II, Français. 2013;44.

George B, Pancha I, Desai C, Chokshi K, Paliwal C, et al. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology. 2014; 171:367-374.

Junior WGM, Gorgich M, Corrêa PS, Martins AA, Mata TM, Caetano NS. Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture. 2020;15: 73556215

Sabatie J, Choplin L, Paul F, Monsan P. The effect of synthesis temperature on the Theological properties of native dextran-.Biotechnology Letters. 1986;8(6):425-430.

Dermoun D. Ecophysiologie de Porphyridium cruentum : validation expérimentale d'un modèle de croissance. Etude de la production de polysaccharide. Thèse de Doctorat de l'Université de Technologie de Compiègne, France. 1987;137.

Ahlgren G. Gustafsson IB, Boberg M. Fatty acid content and chemical composition of freshwater microalgae. Journal of Phycology. 1992;28:37-50.

Payer HD, Pabst W, Runkel KH. IN: Algae Biomass, Shelef, G. and Soeder, C. J. (eds). Elsevier/North-Holland Biomedical Press, NY; 1980.

Hanušová J, Havlík B. Studies of the biochemical composition of fresh‐water plankton. Part 1: The protein contents in green and blue‐green algae. Actahydrochimica et hydrobiologica. 1976; 4(2):129-135.

Vieler A, Wilhelm C, Goss R, Süß R, Schiller J. The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem. Phys. Lipids 2007;150:143–155.

Idrissi Abdelkhalek EA, Mohamed B, Mohammed AM, Lotfi A. Growth performance and biochemical composition of nineteen microalgae collected from different Moroccan reservoirs. Mediterr. Mar. Sci. 2016;17:323-332.