Published: 2021-02-12

Page: 34-52


School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, 1002 Metro Manila, Philippines


School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, 1002 Metro Manila, Philippines


Ph.D. Educational Management Major in P.E., Graduate School, Emilio Aguinaldo College, Manila, 1007 Metro Manila, Philippines


Department of Medical Science Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan

*Author to whom correspondence should be addressed.


Pito-pito is a multi-component medicinal plant preparation containing seven plant materials from the leaves of Premna odorata Blanco., Lagerstroemia speciosa Pers., Psidium guajava Linn., Mangifera indica Linn. and Pandanus amaryllifolius Roxb., and seeds of Pimpinella anisum Linn. and Coriandrum sativum Linn. The objective of the study is to determine the antioxidant activity of Pito-pito. The total phenolic, flavonoid, condensed tannin and polysaccharide, and the antixodant activity of Pito-pito extracted in seven solvents and water extract of plant material ingredients were determined. This study revealed that the water extract has the highest amount of total phenolic and polysachharide, and the acetone extract has the highest amount of total flavonoid and condensed tannin. The extract of methanol has the highest activities in DPPH free radical scavenging (IC50 = 97.78 ± 2.87 µg/mL) and FRAP assay (278.89 ± 0.70 mg Trolox / g Extract) by a relatively small margin with the water extract (IC50 = 107.02 ± 4.66 µg/mL and 264.28 ± 2.60 mg Trolox / g Extract, respectively). It was found that L. speciosa, P. guajava, and M. indica contained the highest amount phenolics and possessed the greatest antioxidant activity. Correspondingly, the activity was associated to the amount of the total phenolic. A high linear correlation between FRAP assay and the content of total phenolic was determined, with an R2 value of 0.9541 in the Pito-pito medicinal plant extract and 0.9296 in individual plant materials water extract. The extracts of Pito-pito showed antioxidant activity and exhibited correlation to the content of phenolic compounds.

Keywords: Pito-pito, total phenolic, total flavonoid, total condensed tannin, total polysaccharide, antioxidant activity.

How to Cite



Download data is not yet available.


Veeresham C. Natural products derived from plants as a sourced of drugs. J Adv Phar Technol Res. 2012;3(4):200-1.

Stuart G, Stuart-Santiago A. Pito-pito. Philippine medicinal plant, stuart xchange. Updated; 2020.


Elmaidomy AH, Alhadrami HA, Amin E, Aly HF, Othman AM, Rateb ME, Hetta MH, Abdelmohsen UR, Hassan HM. Anti-inflammatory and antioxidant activities of terpene- and polyphenol-rich Premna odorata leaves on alcohol-inflamed female wistar albino rat liver. Molecules. 2020; 25(3113).

Unno T, Sakane I, Masumizu T, Khno M, Kakuda T. Antioxidant activity of water extracts of Lagerstroemia speciosa leaves. Biosci Biotech Biochem. 1997;61(10): 1772-4.

Saumya SM, Basha PM. Antioxidant effect of Lagerstroemia speciosa Pers (Banaba) leaf extract in streptozocin-induced diabetic mice. Indian J Exp Biol. 2011;49:125-31.

Chen HY, Yen GC. Antioxidant activity and free radical-scavenging capacity of extracts from Guava (Psidium guajava L.) leaves. Food Chemistry. 2007;101:686-94.

Beena WS, Kumar KV, Banu MS, Anand AV,Kumar PS. Antioxidative activity of Psidium guajava leaf extract – a review. Research J. Pharmacognosy and Phytochemistry. 2011;3(4):143-7.

Stoilova I, Jirovetz L, Stoyanova A. Antioxidant activity of polyphenol mangiferin. EJEAFChe 2008;7(13):2706-16.

Suwannakul S, Chaibenjawong P, Suwannakul S. Antioxidant Anti-Cancer and antimicrobial activities of ethanol Pandanus amaryllifolius Roxb. Leaf Extract (In vitro) – A potential medical application. Journal of International Dental and Medical Research. 2018;11(2):383-9.

Amer AM, Aly UI. Antioxidant and antimbacterial properties of anise (Pimpinella anisum L.). Egypt Pharmaceut J. 2019;18:68-73.

Wangensteen H, Samuelsen AB, Malterud KE. Antioxidant activity in extracts from coriander. Food Chemistry. 2004;88(2): 293-7.

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 1999.

Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 1999;103(1):129-35.

McCord JM. The evolution of free radicals and oxidative stress. The American Journal of Medicine. 2000;108(8):652-659.

Chow CW, Abreu MTH, Suzuki T, Downey GP. Oxidative stress and acute lung injury. American Journal of Respiratory Cell and Molecular Biology. 2003;29(4):427-31.

Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK. Mechanism of cell death in oxidative stress. Antioxid Redox Signal. 2007;9(1):49-89.

Chatterjee S. Chapter two – oxidative stress, inflammation and disease. Oxidative Stress and Biomaterials. Academic Press; 2016.

Ramachandran A, Jaeschke H. Oxidative stress and acute hepatic injury. Current Opinion in Toxicology. 2008;7:17-21.

Moskovitz J, Yin MB, Cook PB. Free radicals and disease. Archives of Biochemistry and Biophysics. 2002; 397(2):354-9.

Rochette L, Zeller M, Cottin T, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta. 2014;1840(9):2709-29.

Ullah A, Khan A, Khan I. Diabetes mellitus and oxidative stress – a concise review. Saudi Pharmaceutical Journal. 2015;24(5): 547-53.

Tan BL, Norhaizan ME, Huynh K, Heshu SR, Yeap SK, Hazilawati H, Roselina K. Water extract of brewers’ rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers’ rice-treated rats with azoxymethane-induced colon carcinogenesis. BMC Complement Altern Med. 2015;15(205).

Tan BL, Norhaizan ME, Liew WPP, Rahman HS. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Frontiers in Pharmacology. 2018; 9(1162).

Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanism to clinical applications. Oxidative Medicine and Cellular Longevity. 2017;2017(2525967).

Smallwood MJ, Nissim A, Knight AR, Whiteman M, Haigh R. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med. 2018;125:3-14.

Liguori I, Russo G, Curcio F, Bulli G, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging and diseases. Clinical Interventions in Aging. 2018;13: 757-72.

Vona R, Gambardella L, Cittadini C, Straface E, Pietraforte D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative Medicine and Cellular Longevity. 2019; 8267234.

Singleton VL, JA Rossie. Colorimetry of Total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16(3):144-158.

Chang C, Yang M, Wen H, Chen J. Estimation of total flavonoid content in propolis by two complementary colorometric methods. Journal of Food and Drug Analysis. 2002;10(3):178-182.

Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J. Sci. Fd. Agric. 1978;29(9):788-794.

Dubois M, KA Gilles, JK Hamilton. Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350-356.

Blois, MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200.

Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239(1):70-76.

Halsam E. Practical polyphenolics: From structure to molecular recognition and physiological action. Cambridge England: Cambridge University Press; 1998.

Sineiro J, Rubilar M, Sanchez M, Jerez M, Pinelo M, Costoya N, Nuñez MJ. Polyphenols from plant materials: Extraction and antioxidant power. EJEAFChe. 2008;7(8):3210-6.

Bai N, Kan H, Roller M, Zheng B, Chen X, Shao Z, Peng T, Zheng Q. Active compounds from Lagerstroemia speciosa, Insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Agric Food Chem. 2008;56(24): 11668-74.

Nutan Modi M, Goel T, Das T, Malik S, Suri S, Rawat AKS, Srivastava SK, Tuli R, Malhota S, Gupta SK. Ellagic acid and gallic acid from Lagerstroemia speciosa L. Inhibit HIV-1 Infection through Inhibition of HIV-1 protease and revrese transcriptase activity. Indian J Med Res. 2013;137(3): 540-548.

Chan EECC, Tan LN, Wong SK. Phytochemistry and pharmacology of Lagerstroemia speciosa: A natural remedy for diabetes. International Journal of Herbal Medicine. 2014;2(1):81-7.

Miura T, Takagi S, Ishida T. Management of Diabetes and Its Complications with Banaba (Lagerstroemia speciosa L.) and corosolic acid. Evid Based Complem Alternat Med. 2012;2012(871495).

Hayashi T, Maruyama H, Kasai R, Hattori K, Takasuga S, Hazeki O, Yamasaki K, Tanaka T. Ellagitannins from Lagerstroemia speciosa as Activators of Glucose Transport in Fat Cells. Plant Mad 2002;68(2):173-5.

Kim SH, Cho SK, Hyun SH, Park HE, Kim YS, Choi HK. metabolic profiling and predicting the free radical scavenging activity of Guava (Psidium guajava L.) leaves according to harvest time by 1h-nuclear magnetic resonance spectroscopy. Biosci Biotech Biochem. 2011;75(6):1090-7.

Fu HZ, Luo YM, Li CJ, Yang JZ, Zhang DM. Psidials AC, Three unusual meroterpenoids from the leaves of Psidium guajava L. Org Lett. 2010;12(4):656-9.

Shu JC, Chou GX, Wang ZT. One new diphenylmethane glycoside from the leaves of Psidium guajava L. Nat Prod Res. 2012; 26(21):1971-5.

Shao M, Wang Y, Huang XJ, Fan CL, Zhang QW, Zhang XQ, Ye WC. Four new triterpenoids from the leaves of Psidium guajava. J Asian Nat Prod Res. 2012; 14(4):348-54.

Rizzo LY, Longato GB, Ruiz ALTG, Tinti SV, Possenti A, Vendramini-Costa DB, Sartoratto A, Figueira GM, Silva FLN, Eberlin MN, Souza TACB, Murakami MT, Rizzo E, Foglio MA, Kiessling F, Lammers T, Carvalho JE. In vitro, In vivo and In silico analysis of the anticancer and estrogen-like activity of guava leaf extracts. Curr Med Chem. 2014;21(1).

Tang GH, Dong Z, Guo YQ, Cheng ZB, Zhou CJ, Yin S. Psiguajadials A-K: Unusal Psidium Meroterpenoids as phosphodiesterase-4 inhibitors from the leaves of Psidium guajava. Sci Rep. 2017; 7(1047).

Schofield P, Mbugua DM, Pell AN. Analysis of condensed tannins: A review. Animal Feed Science and Technology. 2001;91(1):21-40.

Morsi RMY, El-Tahan NR, El-Hadad AMA. Effect of aqueous extract of Mangifera Indica leaves, as functional foods. J App Sci Res. 2010;6(6):712-21.

Pan J, Yi X, Zhang S, Cheng J, Wang Y, Liu C, He X. Bioactive phenolics from mango leaves (Magifera indica L.). Industrial Crops and Products. 2018;111: 400-6.

Kanwal Q, Hussain I, Siddiqui HL, Javaid A. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat Prod Res. 2010;24(20):1907-14.

Helen PAM, Aswathy MR, Deepthi KG, Mol RR, Joseph JJ, Sree SJ. Phytochemical analysis and anticancer activity of leaf extract of Mangifera indica (Kottukonam Varika). IJPSR. 2017;4(2):823-8.

Mansibo M, He Q. Major mango polyphenols and their potential significance to human health. CRFSFS. 2008;7:309-19.

Jyotshna, Khare P, Shanker K. Mangiferin: A review of sources and interventions for biological activities. BioFactors. 2016; 42(5):504-14.

Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids in Health and Disease. 2017;16(84).

Dianita R, Jantan I. Ethnomedicinal Uses, Phytochemistry and pharmacological aspects of the Genus Premna: A review. Pharm Biol. 2016;55(1):1715-39.

Otsuka H, Kubo N, Yamasaki K, Pandolina WG. Two iridoid glycoside caffeoyl esters from Premna odorata. Phytochemistry. 1989;28(2):513-5.

Otsuka H, Kashima N, Hayashi T, Kubo N, Yamasaki K, Pandolina WG. Premnaodorosides A, B, and C, Iridoid glucoside diesters of an acyclic monoterpenediol from leaves of Premna odorata. Phytochemistry. 1992;31(9):3129-33.

Pinzon LC, Uy MM, Sze KH, Wang M, Chu LK. Isolation and characterization of antimicrobial, anti-inflammatory and chemopreventive flavones from Premna odorata Blanco. J Med Plant Res. 2011; 5(13):2729-35.

Elmaidomy AH, Mohyeldin MM, Ibrahim MM, Hassan HM, Amin E, Rateb ME, Hetta MH, El Sayed KA. Acylated iridoids and rhamnopyronoses from Premna odorata (Lamiceae) as novel mesenchymal-epithelial transition factor receptor inhibitors for the control of breast cancer. Phytother Res. 2017;31:1546-56.

Altyar AE, Ashour ML, Youssef FS. Premna Odorata: Seasonal metabolic variation in essential oil composition of its leaf and verification of its anti-ageing potential via In Vitro assays and molecular modelling. Biomolecules. 2020;10(879).

Meng JC, Zhu QX, Tan RX. New Antimicrobial mono- and sesquiterpenes from Soroseris hookeriana Subsp. Erysimoides. Plant Med. 2000;66(6):541-44.

Lopez-Posadas R, Ballester I, Abadia-Molina AC, Suarez MD, Zarzuelo A, Martinez-Agustin O, Sanchez de Medina F. Effect of flavonoids on rat splenocytes, a structure-activity relationship study. Biochem Pharm. 2008;76(4):495-506.

Hsu YL, Kuo PL, Lin CC. Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis. Biochem Pharm. 2004;67(5):823-9.

Shim HY, Park JH, Paik HD, Nah SY, Kim DSHL, Han YS. Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-jun activation. Mol Cells. 2007;24(1):95-104.

Fong Y, Shen KH, Chiang TA, Shih YW. Acacetin inhibits TPA-induced MMP-2 and u-PA expressions of human lung cancer cells through inactivating JNK signaling pathway and reducing binding activities of NF-ĸB and AP-1. J Food Sci. 2009; 75(1):H30-38.

Orav A, Raal A, Arak E. Essential oil composition of Pimpinella anisum L. fruits from various european countries. Nat Prod Res. 2008;22(3):227-32.

Besharati-Seidani A, Jabbari A, Yamini Y. Headspeace solvent microextraction: A very rapid method for identification of volatile components of Iranian Pimpinella anisum seed. Analytica Chimica Acta. 2005;530(1):155-61.

Gulcin I, Oktay M, Kirecci E, Kufrevioglu OI. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003;83(3):371-82.

Fujimatu E, Ishikawa T, Kitajima J. Aromatic compound glucosides, alkyl glucoside and glucide from the fruit of anise. Phytochem. 2003;63(5):609-16.

Embong MB, Hadziyev D, Molnar S. Essential oils from spices grown in Alberta. Anise Oil (Pimpinella anisum). Canadian J Plant Sci. 1977;57(3):681-88.

Kunzemann J, Hermann K. Isolation and identification of flavon(ol)-O-glycosides in Caraway (Carum carvi L.), fennel (Foeniculum vulgare Mill.), anise (Pimpinella anisum L.), and coriander (Coriandum sativum L.), and of Flavon-C-glycosides in anise. I. Phenolics of Spices. Lebensmittel-Untersuchung und – Forschung. 1977;164(3):194-200.

Shobha RI, Rajeshwari CU, Andallu B. Anti-peroxidative and anti-diabetic activities of aniseeds (Pimpinella anisum L.) and identification of bioactive compounds. AJPCT 2013;1(5):516-27.

Rajeshwari U, Shobha I, Andallu B. Comparison of aniseeds and coriander seeds for antidiabetic, hypolipidemic and antioxidant activities. Spatula DD. 2011; 1(1):9-16.

Amer AM, Aly UI. Antioxidant and antimbacterial properties of anise (Pimpinella anisum L.). Egyptian Pharmaceutical Journal. 2019;18:68-73.

Yazdani D, Rezazadeh S, Amin G, Abidin MAZ, Shahnazi S, Jamalifar H. Antifungal acitivity of dried extracts of anise (Pimpinella anisum L.) and star anise (Illicium verum Hook, f.) Against Dermatophyte and Saprophyte Fungi. J Med Plant. 2009;8(5):24-9.

Lee JB, Yamagishi C, Hayashi K, Hayashi T. Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinella anisum. Biosci Biotec Biochem. 2011;75(3):459-65.

Tas A. Analgesic effect of Pimpinella anisum L. Essential oil extract in mice. The Indian Journal of Veterinary Journal. 2009; 86(2):145-7.

Takayama H, Ichikawa T, Kitajima M, Nonato MG, Aimi N. Isolation and structure elucidation of two new alkaloids, pandamarilactonine-C and –D, from Pandanus amaryllifolius and revision of relative stereochemistry of pandamarilactone-A and –B by total synthesis. Chem Pharm Bull. 2002;50(9): 1303-4.

Takayama H, Ichikawa T, Kitajima M, Aimi N, Lopez D, Nonato MG. A New alkaloid, pandanamine; Finding of an anticipated biogenic intermediate in Pandanamus amaryllifolius Roxb. Tetrahedron Lett. 2001;42(16):2995-6.

Laohakunjit N, Noomhorm A. Supercritical carbon dioxide extraction of 2-acetyl-1-pyrroline and volatile components from Pandan leaves. Flavour and Fragrance Journal. 2004;19(3):251-9.

Salim AA, Gibson MJ, Craik DJ. New alkaloids from Pandanus amaryllifolius. Journal Nat Prod. 2004;67(1):54-7.

Bhattacharjee P, Kshirsagar A, Singhal RS. Supercritical carbon dioxide extraction of 2-acetyl-1-pyrroline from Pandanus amaryllifolius Roxb. Food Chem. 2005; 91(2):255-9.

Chen XK, Ge FH. Chemical components from essential oil of Pandanus amaryllifolius leaves. Zhong Yao Cai. 2014;37(4):616-20.

Cheng YB, Hu HC, Tsai YC, Chen SL, El-Shazly M, Nonato MG, Wu YC, Chang FR. Isolation and absolute configuration determination of alkaloids from Pandanus amaryllifolius. Tetrahedron. 2017;73(25): 3423-9.

Yeoh PN, Koh KY, Lee JA, Chen YS, Nafiah MA. Pandanus amaryllifolius extract has anticholinergic and antihistaminergic effects in the guinea pig ileum. The Open Conference Proceedings Journal. 2013;4(94).

Bunghigan ME, Nonato M, Draeger S, Franzblau S, dela Cruz TEE. Antimicrobial and antioxidant activities of fungal leaf endophytes associated with Pandanus amaryllifolius Roxb. Philippine Science Letters. 2013;6(2):128-37.

Ghasemzadeh A, Jaafar HZE. Profiling of phenolic compounds and their antioxidant and anticancer activities in Pandan (Pandanus amaryllifolius Roxb.) extracts from different locations of Malaysia. BMC Complement Altern Med. 2013; 13(341).

Laluces HMC, Nakayama A, Nonato MG, dela Cruz TE, Tan MA. Antimicrobial alkaloids from the leaves of Pandanus amaryllifolius. J App Pharm Sci. 2015; 5(10):151-3.

Thoi NDN, Hung TM, Trinh HN. Hypolipidemic effect of ethanolic extract from Pandanus amaryllifolius leaves on triton WR-1339-induced Hyperlipidemia in Mice. IJPR. 2018;8(12):131-6.

Shukor NAA, Ablat A, Muhamad NA, Mohamad J. In vitro antioxidant and In vivo xanthine oxidase inhibitory activities of Pandanus amaryllifolius in potassium oxonate-induced hyperuricemic rats. International Journal of Food Science and Technology. 2018;53(6):1476-85.

Suwannakul S, Chaibenjawong P, Suwannakul A. Antioxidant anti-cancer and antimicrobial activities of ethanol Pandanus amaryllifolius Roxb. Leaf Extract (In vitro) – A potential medical application. Journal of International Dental and Medical Research. 2018; 11(2):383-9.

Chiabchalard A, Nooron N. Antihyperglycemic effects of Pandanus amaryllifolius Roxb. Leaf Extract. Pharmacogn Mag. 2015;11(41):117-22.

Saenthaweesuk S, Naowaboot J, Somparn N. Pandanus amaryllifolius leaf extract increases insulin sensitivity in high-fat diet-induced obese mice. Asian Pac J Trop Biomed. 2016;6(10):866-71.

Reshidan NH, Muid SA, Mamikutty N. The Effects of Pandanus amaryllifolius (Roxb.) Leaf Water Extracts on Fructose-induced Metabolic Syndrome Rat Model. BMC Complement Med Ther. 2019; 19(232).

Wei JN, Liu ZH, Zhao YP, Zhao LL, Xue TK, Lan QK. Phytochemical and bioactive profile of Coriandum Sativum L. Food Chem. 2019;286:260-7.

Contreras-Guzmán ES, Strong, III FC. Determination of tocopherols (Vitamin E) by Reduction of Cupric Ion. J AOAC. 1982;65(5):1215-21.

Rebaya A, Belghith SI, Baghdikian B, Leddet VM, Mabrouki F, Oliver E, Cherif JK, Ayadi MT. Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). J App Pharm Sci. 2015;5(01): 052-7.

Saeed N, Khan MR, Shabbir M. Antioxidant Activity, Total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12(221).

Prior RL, Wu X, Schaich K. Standardized Methods for the Determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53(10):4290-302.

Pulido R, Bravo L, Sakura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48(8):3396-402.