Main Article Content



Diabetes mellitus is one of the leading causes of mortality world over. It occurs when pancreas ability to secrete insulin is diminished, or the body is not able to make proper use of the produced insulin. Type 2 diabetes or non-insulin-dependent diabetes mellitus constitute 90% of all cases of diabetes. It is linked with health deteriorating conditions especially related to microvasculature complications in kidneys, nerves and eyes. It is also associated with an increased risk of stroke and cardiovascular diseases. Many plant-derived beverages are screened for the prevention and management of diabetes. Green tea obtained from steeping leaves of Camellia sinensis in hot water is one of the beverages that is getting attention for its role in tackling diabetes. This review provides an update on the mechanism of green tea in the management of diabetes.

Oxidative stress, diabetes, green tea, camellia sinensis, insulin

Article Details

How to Cite
Mini Review Article


International Diabetes Federation (9th edition, 2019)

Lal BS. Diabetes: causes, symptoms and treatments. Public health, environment and social issue in India. 2016;55-67.

Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiology. 2018;14(6):491–509.

Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A. Management of hyperglycemia in type 2 diabetes 2015: A patient- centered approach. Diabetes Cares. 2015;38:140–149.

Quezada-fernández P, Trujillo-quiros J, Pascoe-gonzález S, Trujillo-rangel WA, Cardona-müller D, Ramos-becerra CG, Barocio-pantoja M, Cerda MR, Nérida E, Cardona-muñóz EG, García-benavides L and Grover-páez F. Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: A randomised, double-blind, placebo-controlled trial. International Journal of Food Sciences and Nutrition. 2019;0(0);1–9.

Josic J, Olsson AT, Wickeberg J, Lindstedt S, Hlebowicz J. Does green tea affect postprandial glucose , insulin and satiety in healthy subjects: A randomized controlled trial. Nutrition Journal 2010;9(63): 1–8.

Brown AE, Walker M. Genetics of insulin resistance and the metabolic syndrome. Current Cardiology Reports. 2016;18(75):1-8.

Trial P, Liu C, Huang C, Huang L, Chen I and Chiu J. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities : A randomized , double-blinded and placebo controlled trial. Plos One. 2014;9(3):1–9.

Tsuda A, Ishimura E, Uedono H, Ochi A, Nakatani S, Morioka T, Mori K, Uchida J, Emoto M, Nakatani T and Inaba M. Association of Albuminuria with intraglomerular hydrostatic pressure and insulin resistance in subjects with Impaired Fasting glucose/Impaired glucose tolerance. Diabetes care. 2018;41(11):2414–2420.

Abdul-Ghani MA, Tripathy D, Defronzo RA. Contributions of B-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and im-paired fasting glucose. Diabetes Care. 2006;29: 1130–1139.

Jing Y, Han G, Hu Y, Bi Y, Li L. Tea consumption and risk of type 2 diabetes: A meta-analysis of cohort studies. Journal of General Internal Medicine. 2009;24(5): 557–562.

Waltner-Law ME. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. Journal of Biological Chemistry. 2002;277(38):34933–34940.

Anderson RA, Polansky MM. Tea enhances insulin activity. Journal of Agricultural and Food Chemistry. 2002;50:7182– 7186.

Han MK. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic b -cell damage. Experimental and Molecular Medcine. 2003;35(2):136–139.

Huang H, Guo Q, Qiu C, Huang B, Fu X, Yao J, Liang J, Li L, Chen L, Tang K, Lin L, Lu J, Bi Y, Ning G, Wen J, Lin C and Chen G. Associations of green tea and rock tea consumption with risk of impaired fasting glucose and impaired glucose tolerance in chinese men and women. Plos One. 2013;8(11):1–7.

Oh J, Jo H, Cho AR, Kim S, Han J. Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control. 2013;31(2):403–409.

Lasiate L, Spadiene A, Savickiene N, Skesters A, Silova A. The effect of ginkgo biloba and camellia sinensis extracts on psychological state and glycemic control in patients with type 2 diabetes mellitus. Natural Product Communication. 2014; 9(9):1345-1350.

Mizuno H, Ekuni D, Maruyama T, Kataoka K, Yoneda T, Fukuhara D, Sugiura Y, Tomofuji T Wada J, Morita M. The effects of non-surgical periodontal treatment on glycemic control, oxidative stress balance and quality of life in patients with type 2 diabetes : A randomized clinical trial. Non-periodontal Treatment and Glycemic Conrol. 2017;1–17.

Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry. 2005;53(6):1841-1856.

Dikalova AE, Bikineyeva AT, Budzyn K. Therapeutic targeting ofmitochondrial superoxide in hypertension. Circulation Research. 2010;107(1):106–116.

Le Lay S, Simard G, Martinez MC, Andriantsitohaina R. Oxidative stress and metabolic pathologies: From an adipocentric point of view. Oxidative Medicine and Cellular Longevity. 2014; 1-18.

Bin-jumah MN. Antidiabetic Effect of monolluma quadrangula is mediated via modulation of glucose metabolizing enzymes, antioxidant defenses and adiponectin in type 2 diabetic rats. Oxidative Medicine and Cellular Longetivity. 2019;1-11.

Ghadge AA, Diwan AG, Harsulkar AM, Kuvalekar AA. Gender dependent effects of fasting blood glucose levels and disease duration on biochemical markers in type 2 diabetics: A pilot study. Diabetes Metabolic Syndrome. 2017;11:481–489.

Yanai H, Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. International Journal of Molecular Science. 2019;20(1190):1–25.

Funahashi T, Nakamura T, Shimomura I, Maeda K, Kuriyama H, Takahashi M, Arita Y, Kihara S, Matsuzawa Y. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Internal Medicine. 1999;38(2):202–206.

Yamauchi T, Kamon J, Minokoshi Y. Adiponectin stimulates glucose utilization and fatty-acid oxidation by acti- vating AMP-activated protein kinase. Nature Medicine. 2002;8(11):1288–1295.

Takahashi M, Miyashita M, Suzuki K, Bae S, Kim H, Wakisaka T, Matsui Y, Takeshita M, Yasunaga K. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. British Journal of Nutrition. 2014;112:1542-1550.

Sheard NF, Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX, Mayer-Davis E, Kulkarni K, Geil P. Dietary carbohydrate (amount and type) in the prevention and management of diabetes. Diabetes care. 2004;27(9):2266-2271.

Chang CR, Francois ME, Little JP. Restricting carbohydrates at breakfast is sufficient to reduce 24-hour exposure to postprandial hyperglycemia and improve glycemic variability. American Society for Nutrition. 2019(109):1302–1309.

Tsuneki H, Ishizuka M, Terasawa M, Wu JB, Sasaoka T and Kimura I. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic mice and on glucose metabolism in healthy humans. BMC Pharmacol. 2004;4(18).

Venables MC, Hulston CJ, Cox HR, Jeukendrup AE. Green tea extract ingestion, fat oxidation and glucose tolerance in healthy humans. The American Journal of Clinical Nutrition. 2008;87(3): 778-784

Hanhineva K, Torronen R and Bondia-Pons I. Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Science. 2010;11(4): 1365-1402.

Williamson G. Possible effects of dietary polyphenols on sugar absorption and digestion. Molecular Nutrition and Food Research. 2013;57(1):48-57.

Williamson G. Polyphenol and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin : A randomised, controlled, single-blind, cross-over intervention. British Journal of Nutrition. 2016;116:443–450.