Main Article Content



A number of plant sources were reported which are used in diabetes mellitus. Its cultivation and collection also effect the phytoconstituents composition and its biological importance. This metabolic disorder occurs because there is an insulin shortage. It occurs when the body is unable to uses insulin in an efficient way. Inhibiting the action of glucose digesting enzymes including α-amylase and α-glycosidase, for example, is a type 2 diabetes treatment choice. Plants are by far the most reliable source of plant phyto-groups. They include terpenoids, glycosides, alkaloids, flavonoids, phenols and other plant derivatives. This review carries some of the readily available plant sources such as Trigonella foenum‑graecum, Aloe megalacantha, Azadirachta indica, Psidium guajava, Ocimum basilicum, Moringa oleifera, Allium cepa, Curcuma longa which showed some promising α- amylase inhibitory activities.

Medicinal plants, cultivation, collection, type 2 diabetes.

Article Details

How to Cite
Review Article


Win MJJDMDC. Novel effect of medicinal plants on diabetes mellitus. 2020;7(2): 73-74.

Zheng Y, Ley SH, Hu FBJNRE. Global aetiology and epidemiology of type 2 Diabetes Mellitus and its Complications. 2018;14(2):88.

DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138): 2449-2462.

Cho N, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, Ohlrogge A, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. 2018;138:271-281.

Gruenwald J, Freder J, Armbruester NJCrifs. Nutrition, Cinnamon and health. 2010;50(9):822-834.

Oboh G, Isaac AT, Akinyemi AJ, Ajani RAJIjobsI. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by Phenolic Extracts of Avocado Pear Leaves and Fruit. 2014; 10(3):208.

Gupta R, Gupta N. Interactions of ceftiofur sodium with H2-receptor antagonist. Indian Journal of Pharmaceutical Sciences. 2020;82(1):114-122.

Tandon N, Tandon R. H2-receptor antagonist interactions with Ceftiofur sodium. J Chem Pharm Res. 2016;8(5):831-844.

Wu H, Xu BJIJoFP. Inhibitory effects of onion against α-glucosidase activity and its correlation with Phenolic Antioxidants. 2014;17(3):599-609.

Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata JJFC. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). 2008;106(1):247-252.

Singab ANB, El-Beshbishy HA, Yonekawa M, Nomura T, Fukai TJJoe. Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on diabetes and lipid peroxidation of streptozotocin-Induced Diabetic Rats. 2005;100(3):333-338.

Vyas M. Physicochemical analysis of leaves of Eriobotrya japonica and antioxidant and antidiabetic evaluation of its methanolic extract. International Journal of Green Pharmacy (IJGP). 2019; 13(3).

Patil P, Goswami A, Kalia K, Kate ASJIJoPR. Therapeutics, Plant-derived bioactive peptides: A Treatment to Cure Diabetes. 2020;26(2):955-968.

Belayneh A, Demissew S, Bussa NF, Bisrat D. Ethno-medicinal and bio-cultural importance of aloes from south and east of the Great Rift Valley floristic regions of Ethiopia. Heliyon. 2020;6(6):e04344.

Hammeso WW, Emiru YK, Ayalew Getahun K, Kahaliw WJEBC, Medicine A. Antidiabetic and antihyperlipidemic activities of the leaf latex extract of Aloe megalacantha baker (Aloaceae) in Streptozotocin-Induced Diabetic Model; 2019.

[Demissew S, Friis I, Awas T, Wilkin P, Weber O, Bachman S, Nordal IJKB. Four new species of Aloe (Aloaceae) from Ethiopia, with notes on the ethics of describing new taxa from Foreign Countries. 2011;66(1):111-121.

Sebsebe D, Nordal I. Aloes and other lilies of Ethiopia and Eritrea. Shama Books: Addis Ababa, Ethiopia; 2010.

Klopper R, Smith G. Aloes of the world: When, where and who? Aloe. 2013;50: 44-52.

Araya TY, Karim A, Hailu GS, Periasamy G, Kahsay GJD. Metabolic syndrome; targets, O.; therapy, antihyperglycemic activity of TLC Isolates from the Leaves of Aloe megalacantha Baker in Streptozotocin-Induced Diabetic Mice. 2021;14:1153.

Tekulu GH, Araya EM, Mengesha HGJBc, Medicine a., In-vitro α-amylase inhibitory effect of TLC isolates of Aloe megalacantha baker and Aloe Monticola Reynolds. 2019;19(1):1-7.

Rodrigues M, Rocha DI, Mendonça AMdC, Silva LCd, Festucci-Buselli RA, Otoni WC. Leaf anatomy micromorphometry plasticity and histochemistry of Azadirachta indica during acclimatization %. J Rodriguésia. 2020;71.

Islas JF, Acosta E, G-Buentello Z, Delgado-Gallegos JL, Moreno-Treviño MG, Escalante B, et al. An overview of Neem (Azadirachta indica) and its potential impact on health. Journal of Functional Foods. 2020;74:104171.

Girish K, Shankara BSJEjoB. Neem–a green treasure. 2008;4(3):102-111.

Parrotta JA, Chaturvedi AJUFS. International institute of tropical forestry SO-ITF-SM-70. Azadirachta indica A. Juss. Neem, margosa. Meliaceae. Mahogany Family. 1994;8.

Vyas M. A short review on anticancer investigations of Strychnos nux-vomica. International Journal of Green Pharmacy (IJGP). 2016;10(3).

Perez-Gutierrez RM, Damian-Guzman MJB. bulletin, p., Meliacinolin: A potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in Streptozotocin-Nicotinamide-Induced Type 2 DIABETEs in Mice. 2012;35(9):1516-1524.

Hansawasdi C, Kawabata J, kasai T. α-Amylase Inhibitors from Roselle (Hibiscus sabdariffa Linn.) Tea. Bioscience, Biotechnology, and Biochemistry. 2000; 64(5):1041-1043.

Wang B, Liu HJMPM. The study on the anti-diabetic effect of guava. 2005;32:1293-1294.

Simão AA, Marques TR, Marcussi S, Corrêa AD. Aqueous extract of Psidium guajava leaves: Phenolic compounds and inhibitory potential on digestive enzymes. Anais da Academia Brasileira de Ciencias. 2017;89(3 Suppl):2155-2165.

Daswani PG, Gholkar MS, Birdi TJ. Psidium guajava: A single plant for multiple health problems of rural indian population. Pharmacognosy Reviews. 2017;11(22):167-174.

Ojewole J, Awe E, Chiwororo W. Antidiarrhoeal activity of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rodents. Journal of Smooth Muscle Research = Nihon Heikatsukin Gakkai kikanshi. 2009;44:195-207.

Wang H, Du YJ, Song HCJFc. α-Glucosidase and α-amylase inhibitory activities of guava leaves. 2010;123(1): 6-13.

Shahrajabian MH, Sun W, Cheng QJIJoFP. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. 2020;23(1):1961-1970.


Berić T, Nikolić B, Stanojević J, Vuković-Gačić B, Knežević-Vukčević JJF, Toxicology C. Protective effect of basil (Ocimum basilicum L.) against Oxidative DNA Damage and Mutagenesis. 2008; 46(2):724-732.

Ali H, Houghton P, Soumyanath AJJoe. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with Particular Reference to Phyllanthus Amarus. 2006;107(3):449-455.

Bawa G, Mahajan R, Mehta M, Satija S, Vyas M, Sharma N, Khurana N. Herbal drugs for the treatment of opioid withdrawal syndrome: A mini review. Plant Archives. 2019;19(2):1005-1011.

McCue PP, Shetty KJAPJoCN. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. 2004;13(1).

El-Beshbishy H, Bahashwan SJT, Health I. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study. 2012;28(1):42-50.

Vazquez-Armenta F, Cruz-Valenzuela M, Ayala-Zavala J. In essential oils in food preservation, Flavor and Safety; Elsevier. 2016;617-623.

Alam K, Uddin S, Md S, Uddin M. Medicinal plant Allium sativum = A Review. Journal of Medicinal Plants Studies. 2016;4:72-79.

Malik G, Mahajan V, Sharma A, Mir J, Dhatt A, Singh D, et al. Present status and future prospects of garlic (Allium sativum L.) improvement in India with special reference to Long Day Type; 2017.

Efiong EE, Akumba LP, Chukwu EC, Olusesan AI, Obochi GJIJoPP. Biochemistry, Comparative qualitative phytochemical analysis of oil, juice and dry forms of garlic (Allium sativum) and different varieties of onions (Allium cepa) consumed in Makurdi Metropolis. 2020; 12(1):9-16.

Morales-González JA, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Valadez-Vega MDC, Álvarez-González I, et al. Garlic (Allium sativum L.): A Brief Review of Its Antigenotoxic Effects. Foods. 2019;8(8):343.

Ozougwu J. Anti-Diabetic effects of Allium cepa (ONIONS) aqueous extracts on alloxan-Induced diabetic Rattus Novergicus. Pharmacologyonline. 2011;1: 270-281.

Gafar M, Itodo A, Warra A, Abdullahi LJIjof. Science, n., Extraction and physicochemical determination of garlic (Allium sativum L) oil. 2012;1(2):4-7.

Ahmed MU, Ibrahim A, Dahiru NJ, Mohammed HuSJCMIE. Diabetes, alpha amylase inhibitory potential and Mode of Inhibition of Oils from Allium sativum (Garlic) and Allium cepa (Onion). 2020;13:1179551420963106.

Meireles D, Gomes J, Lopes L, Hinzmann M, Machado J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Advances in Traditional Medicine. 2020;20(4):495-515.

Lea MJCpim. Bioremediation of turbid surface water using seed extract from Moringa oleifera Lam. (drumstick) tree. 2010;16(1):1G. 2.1-1G. 2.14.

Akhtar M, Moosa Hasany S, Bhanger MI, Iqbal S. Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions. Journal of Hazardous Materials. 2007;141(3):546-556.

Khor KZ, Lim V, Moses EJ, Abdul Samad NJEBC, Medicine A. The in vitro and in vivo anticancer properties of Moringa oleifera. 2018;2018.

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of moringa oleifera leaves: An overview. Int J Mol Sci. 2015;16(6): 12791-12835.

Kumar R, Kumar R, Sharma N, Vyas M, Mahajan S, Satija S, et al. Fisetin: A phytochemical with various pharmacological activities. Plant Archives. 2019;19(2):1012-1016.

Magaji U, Sacan O, Yanardag RJSAJoB. Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. 2020;128:225-230.

Theanphong O, Mingvanish W, Kirdmanee CJBohs. Technology, Chemical constituents and biological activities of essential oil from Curcuma aeruginosa Roxb. Rhizome. 2015;13(1):16.

Patel DJTPI. Curcuma longa Linn. Cultivation: The process for its Medicinal use and Conservation. 2015;4(1, Part B):99.

Sivabalan S, Anuradha CJIIJoP. A comparative study on the antioxidant and glucose-lowering effects of curcumin and bisdemethoxycurcumin analog through in vitro assays. 2010;6(5):664-669.

Singh G, Kapoor I, Singh P, De Heluani CS, De Lampasona MP, Catalan CAJF. Toxicology, c., Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). 2010;48(4):1026-1031.

Widowati W, Wargasetia T, Afifah E, Mozef T, Kusuma H, Nufus H, et al. Antioxidant and antidiabetic potential of Curcuma longa and its compounds. Asian Journal of Agriculture and Biology. 2018;6:149-161.

Najafian M. The Effects of Curcumin on Alpha Amylase in Diabetics Rats. 2015;17(12):e5198.

Zapata A, Chefer VI, Shippenberg TS. Microdialysis in rodents. Curr Protoc Neurosci, Chapter 7, Unit7.2-Unit7.2; 2009.

Sharma K, Bhatnagar MJIJoP, Archives B. Asparagus racemosus (Shatavari): A versatile female tonic. 2011;2(3):855-863.

Alok S, Jain SK, Verma A, Kumar M, Mahor A, Sabharwal M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac J Trop Dis. 2013;3(3): 242-251.

Karuna DS, Dey P, Das S, Kundu A, Bhakta T. In vitro antioxidant activities of root extract of Asparagus racemosus Linn. J Tradit Complement Med. 2017;8(1):60-65.

Behera SK. Phytochemical screening and antioxidant properties of methanolic extract of root of Asparagus racemosus Linn. International Journal of Food Properties. 2018;21(1):2681-2688.

Negi J, Singh P, Joshi G, Rawat MsM, Bisht V. Chemical constituents of Asparagus. Pharmacognosy Reviews. 2010;4:215-220.

Mandal S, Mukherjee P, Nandy A, Pal M, Saha B. Some pharmacognostical characteristics of asparagus racemosus willd, roots. Ancient Science of Life. 1996;15:282-285.

Vadivelan R, Krishnan RG, Kannan RJJot. Medicine, c., Antidiabetic potential of Asparagus racemosus Willd leaf extracts through inhibition of α-amylase and α-glucosidase. 2019;9(1):1-4.

Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010;1(2):112-121.

Saha S, Ghosh S. Tinospora cordifolia: One plant, many roles. Ancient Science of life. 2012;31:151-159.

Kumar A, Nagaraju S. Giloy [Tinospora cordifolia (Thunb.) Miers].

Verma DK, Goyal K, Kumar P, El-Shazly M. Unmasking the many faces of giloy (Tinospora cordifolia L.): A fresh look on its phytochemical and medicinal properties. Current Pharmaceutical Design; 2020.

Anand A, Khurana R, Wahal N, Mahajan S, Mehta M, Satija S, et al. Vanillin: A comprehensive review of pharmacological activities. Plant Arch. 2019;19:1000-1004.

Shareef I, Jagan P, Reddy M, Gopinath S, Dayananda K, Mandal D, et al. In Vitro α-Amylase Inhibitory Activity of the Leaves of Tinosporacordifolia. 2014;3297:2319-8753.

Scandalios JGJARoPP. Isozymes in development and differentiation. 1974; 25(1):225-258.

Zandi P, Basu S, Cetzal Ix W, Khademi Chalaras S, Bazrkar Khatibani L, Kordrostami M. 2017;217-223.

Idris S, Mishra A, Khushtar M. Recent therapeutic interventions of fenugreek seed: A mechanistic approach. Drug Research. 2021;71(4):180-192.

Ganeshpurkar A, Diwedi V, Bhardwaj YJA. In vitro α-amylase and α-glucosidase inhibitory potential of Trigonella foenum-graecum leaves extract. 2013;34(1): 109.

Lal G, Saran PL, Devi G, Bijarniya D, Raj R. 2014;244-252.