CONTROL OF FUSARIUM WILT OF TOMATO BY USING BIOCONTROL AGENT (Trichoderma spp.)

Main Article Content

ABISHEK KURI
INDIRA MOIRANGHTEM
PRIYANKA GARG

Abstract

Biological control has received a worldwide attention in the recent years and is being integrated effectively with other pesticides. Trichoderma spp. is chosen as the most promising bio-control agent for Fusarium oxysporum f.sp. lycopserisici.To treat the disease in an environmentally safe and sustainable manner isolates from Trichoderma species has to be evaluated against the pathogen. Dual culture is reliable technique in evaluation against the target pathogens in vitro, through the synthesis of volatile and non-volatile inhibitors. The plant growth-fostering fungi (PGPF) or biological control agents (BCA) can be used in farming and horticulture, as Trichoderma strains are beneficial for plant growth and health. Therefore, biological properties and taxonomy has to be closely examined in order to select PGPF or BCA strains. Wide range of Trichoderma species function as biological control agents, which are based on antagonistic properties of multiple mechanisms. Trichoderma trips exercise biocontrol either indirectly by competition for nutrients and space, by modifications to the environmental conditions or through promoting vegetable growth, plant defense mechanisms and the prevention of antibiotics, or directly through mechanisms such as mycoparasitis. The significance in the biocontrol phase rely on the strain of Trichoderma, the antagonization fungus, the crop plant and environmental factors including the access of nutrients, pH, temperature and iron content. Any pathway is activated by promoting the development of certain compounds and metabolites, such as plant growth factors, hydrolytic enzymes, siderophores, antibiotics, and permeases of carbon and acid. Furthermore, the present article highlights the brief mechanism of Trichoderma, methods of applications, recommendations of Trichoderma spp, and some commercial products based on Trichoderma spp against wilt disease.

Keywords:
Bio-control, fusarium wilt, tomato, Trichoderma

Article Details

How to Cite
KURI, A., MOIRANGHTEM, I., & GARG, P. (2021). CONTROL OF FUSARIUM WILT OF TOMATO BY USING BIOCONTROL AGENT (Trichoderma spp.). PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(33-34), 559-570. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/6465
Section
Original Research Article

References

Jaiswal AK, Tiwari S, Faisal M, Shukla HO. Biological control of tomato wilt through soil application of bio-agent and organic ammendments. Journal of Eco-friendly Agriculture. 2015;10(2):189-190.

Cal AD, Larena I, Sabuquillo P, Melgarejo P. Biological control of tomato wilts. Recent Research Developments in Crop Science. 2004;1(1):97-115.

El-Rafai IM, Asswah SM, Awdalla OA. Biocontrol of some tomato disease using some antagonistic microorganisms. Pakistan Journal of Biological Sciences (Pakistan); 2003.

Kumar A. Management of Fusarium wilt of tomato using Trichoderma harzianum. International Journal of Research and Analytical Reviews. 2019;1(6):9-16.

Hoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological control. 2009;51(3):409-416.

Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vágvölgyi C, Druzhinina I. Biodiversity of the genus Hypocrea/ Trichoderma in different habitats. In Biotechnology and biology of Trichoderma. 2014;3-24. Elsevier.

Chaverri P, Gazis RO, Samuels GJ. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia. 2011;103(1):139-151.

Chaverri P, Gazis RO, Samuels GJ. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia. 2011;103(1):139-151.

Hermosa R, Rubio MB, Cardoza RE, Nicolás C, Monte E, Gutiérrez S. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int. Microbiol. 2013;16(2):69-80.

Benítez T, Rincón AM, Limón MC, Codon AC. Biocontrol mechanisms of Trichoderma strains. International Microbiology. 2004; 7(4):249-260.

Agrios GN. Plant pathology. Edition 5th Academic Press, New York, United States of America. 2005;922. End of the English Version.

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology. 2004;2(1): 43-56.

Shahid M, Srivastava M, Singh A, Kumar V, Rastogi S, Pathak N, Srivastava AK. Comparative study of biological agents, Trichoderma harzianum (Th-Azad) and Trichoderma viride (01PP) for controlling wilt disease in pigeon pea. Journal of Microbial & Biochemical Technology. 2014;6:110-115.

Alwathnani HA, Perveen K. Biological control of fusarium wilt of tomato by antagonist fungi and Cyanobacteria. African Journal of Biotechnology. 2012;11(5): 1100-1105.

Hajieghrari B, Torabi-Giglou M, Mohammadi MR, Davari M. Biological potential of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. African Journal of Biotechnology. 2008;7(8).

Harman GE. Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 2006;96(2):190-194.

Shamurailatpam D, Kumar A. Selected fungicides and biocontrol agents for managing early blight of tomato caused by Alternaria solani. Indian Journal of Plant Protection. 2020;48(4):474-481.

Chet I, Inbar J, Hadar I. Fungal antagonists and mycoparasites. The mycota IV: environmental and microbial relationships. Springer-Verlag, Berlin. 1997;165-184.

Harman GE, Lorito M, Lynch JM. Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Advances in Applied Microbiology. 2004;56:313- 330.

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Kubicek CP. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology. 2011;9(10):749-759.

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Kubicek CP. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology. 2011;9(10): 749-759.

Qualhato TF, Lopes FAC, Steindorff AS, Brandao RS, Jesuino RSA, Ulhoa CJ. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnology Letters. 2013;35(9):1461-1468.

Monte E. Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology. 2001; 4(1):1-4.

Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell. 2004; 3(2):561-563.

Chet I, Inbar J. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology. 1994;48(1):37-43.

Tjamos EC, Papavizas GC, Cook RJ, (Eds.). Biological control of plant diseases: progress and challenges for the future. Springer Science & Business Media. 2013; 230.

Latorre BA, Rioja ME. Eficacia de los Tratamientos Fungicidas para el Control de Botrytis Cinerea de la Vid en Función de la Época de Aplicación. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura. 2001;28(2):61-66.

Franken P, Kuhn G, Gianinazzi-Pearson V. Development and molecular biology of arbuscular mycorrhizal fungi. Mycology Series. 2002;15:325-348.

Kershaw MJ, Talbot NJ. Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol. 1998;23:18-33.

Bostock RM, Karban R, Thaler JS, Weyman PD, Gilchrist D. Signal interactions in induced resistance to pathogens and insect herbivores. European Journal of Plant Pathology. 2001;107(1):103-111.

Stacey G, Keen NT (eds). Plant-Microbe Interactions.1999;4. APS Press, St. Paul.

Arora DK, Elander RP, Mukerji KG (eds). Handbook of applied mycology. Fungal Biotechnology.1992;4. Marcel Dekker, New York; 1992.

Osiewacz HD, (ed). Molecular biology of fungal development. Marcel Dekker, New York; 2002.

Vey A, Hoagland RE, Butt TM. Toxic metabolites of fungal biocontrol agents. Fungi as biocontrol agents: Progress, Problems and Potential. 2001;1:311-346.

Delgado-Jarana J, Rincon AM, Bentez T. Aspartyl protease from Trichoderma harzianum CECT 2413: Cloning and characterization. The GenBank/EMBL/ DDBJ accession number for the sequence reported in this paper is AJ276388. Microbiology. 2002;148(5):1305- 1315.

Arst Jr. HN, Peñalva MA. pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends in Genetics. 2003;19(4):224-231.

Barari H. Biocontrol of tomato Fusarium wilt by Trichoderma species under in vitro and in vivo conditions. Cercetari Agronomice in Moldova. 2016;49(1):91- 98.

Harman GE, Lorito M, Lynch JM. Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Advances in Applied Microbiology. 2004;56:313- 330.

Ghazanfar MU, Raza M, Raza W, Qamar MI. Trichoderma as potentialbiocontrol agent, its exploitation in agriculture: A review. Plant Protection. 2018;2(3).

Kumar V, Kumar A, Srivastava M, Pandey S, Shahid M, Srivastava YK, Trivedi S. Trichoderma harzianum (Th. azad) as a mycoparasite of Fusarium and growth enhancer of tomato in glasshouse conditions. J. Pure Applied Microbiol. 2016; 10:1463-1468.

Muhammad UG, Mubashar R, Waqas R, Misbah IQ. Trichoderma as potential bioconcrol agent, its exploitation in Agriculture: A Review. 2018;2(3):109-135.

Tondje PR, Roberts DP, Bon MC, Widmer TOMOTHY, Samuels GJ, Ismaiel A, Hebbar KP. Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biological Control. 2007;43(2): 202-212.

Roy AK, Mandal NL, Singh AN. Screening of maize rhizobacteria against aflatoxigenic Aspergillus flavus strains in relation to siderophore and HCN production. Indian Phytopathology. 2009;62(4):440-444.

Paternoster T, Défago G, Duffy B, Gessler C, Pertot I. Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. Int. Microbiol. 2010;13:195-206.

Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Luduen˜a L, Pena D, Iba´n˜ez F, Fabra A. Phosphate-solubilizing peanut associated bacteria: screening for plantgrowthpromoting activities. Plant Soil. 2010;329:421–431.