Main Article Content



Vitiligo is a common skin depigmentation disorder with a heavy psychological impact on the patients. The success rates of the current therapies are variable and often frustrating, leading a large proportion of patients to self-medicate with herbal treatments. Morocco, being one of the countries with a long tradition in the use of medicinal plants, is no exception to this rule. We identified through a search in the ethnobotanical studies carried out in Morocco a list of 10 plants used in the traditional treatment of Vitiligo: Ammi majus, Anacyclus pyrethrum, Asphodelus ramosus, Curcuma longa, Ficus carica, Hibiscus rosa-sinensis, Nigella sativa, Plumbago europea, Ruta montana, and Scrophularia canina. The literature study that we performed subsequently showed that these species are either photosensitizer plants often leading to acute dermic phototoxicity, or plants acting through various properties (antioxidant, anti-inflammatory, antimicrobial, or wound healing) and which have never been clinically shown to cure vitiligo. Therefore, we conclude that for photosensitizing plants, the therapeutic benefit is low with a high risk of toxicity which is aggravated by the lack of knowledge of herbalists and traditional healers about the physiopathology of vitiligo. For the other plants, more research is needed to establish clinical evidence of their actions against vitiligo.

Vitiligo, medicinal plants, traditional medicine, phytophototoxicity, therapeutic benefit

Article Details

How to Cite
Review Article


Picardo M, Dell'Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad D, Taieb A. Vitiligo. Nat Rev Dis Primers. 2015;1:15011.

Nguyen CM, Beroukhim K, Danesh MJ, Babikian A, Koo J, Leon A. The psychosocial impact of acne, vitiligo, and psoriasis: a review. Clin Cosmet Investig Dermatol. 2016;9:383-92.

Szczurko O, Boon HS. A systematic review of natural health product treatment for vitiligo. BMC Dermatol 2008;8:2.

Xiao BH, Wu Y, Sun Y, Chen HD, Gao XH. Treatment of vitiligo with NB-UVB: a systematic review. J Dermatolog Treat. 2015;26:340–6.

Traditional, complementary, and integrative medicine. The website of the World Health Organization.
(Accessed 08 May, 2021).

World Health Organization. Programme on Traditional Medicine. General Guidelines for Methodologies on research and evaluation of traditional medicine; 2000‎.
(Accessed 08 May, 2021).

Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 2006;27(1):1-93.

Bellakhdar J. La Pharmacopée marocaine traditionnelle. Médecine arabe ancienne et savoirs populaires. Paris, Ibis Press, 1997.

Ait Ouakrouch I, Amal S, Akhdari N, Hocar O. Enquête ethnobotanique à propos des plantes médicinales utilisées dans le traitement traditionnel du vitiligo à Marrakech, Maroc. Ann Dermatol Venereol. 2017;144(12 suppl.):S334.

Wold Flora Online.
(Accessed on 08 May 2021).

Online Atlas of the British and Irish Flora.
(Accessed on 08 May 2021).

US. National Plant Germplasm System.
(Accessed on 08 May 2021)..

McGovern TW, Barkley TM. Botanical dermatology. Int J Dermatol. 1998;37(5):321-34.

El Mofty AM. A preliminary clinical report on the treatment of leucoderma with Ammi majus Linn., J Roy Egyptian M A. 1948;31:651-65.

El Mofty AM. Further study on treatment of leucoderma with Ammi majus Linn., J. Roy. Egyptian MA. 1952;35:1-28.

El Mofty AM. Observations on the use of Ammi majus Linn. in vitiligo, Brit J Dermat. 1952;64:431-41.

Sidi E, Bourgeois-Gavardin J. The treatment of vitiligo with Ammi majus Linn; a preliminary note. J Invest Dermatol. 1952;18(5):391-5.

Lerner AB, Denton CR, Fitzpatrick TB. Clinical and experimental studies with 8-Methoxypsoralen in vitiligo, J Invest Dermat. 1953;20:299-314.

Sheldon SA, Harrel ER, Curtis AC. Results in the Treatment of Vitiligo with 8-Methoxypsoralen. AMA Arch Derm. 1956; 74(1):9–13.

Kanof NB. Melanin formation in vitiliginous skin under the influence of external applications of 8-methoxypsoralen. J Invest Dermatol. 1955;24(1):5-10

Couperus M. Ammoidin (xanthotoxin) in the treatment of vitiligo. Calif Med. 1954;81(6):402-406.

Cherif F, Azaiz MI, Ben Hamida A, Osman B, Dhari A. Calcipotriol and PUVA as treatment for vitiligo. Dermatology Online Journal. 2003;9(5).

Fahmy IR, Abu-Shady H. Ammi majus Linn.: Pharmacognostical study and isolation of a crystalline constituent, ammoidin, Quart J Pharm & Pharmacol. 1947;20:281-91.

Fahmy IR, Abu-Shady H, Schonberg A, Sina A: A crystalline principle from Ammi majus Linn. Nature. 1947;160:468.

Fahmy IR, Abu-Shady H. The isolation and properties of ammoidin, ammidin and majudin, and their effect in the treatment of leucoderma, Quart J Pharm & Pharmacol. 1948;21:499-503.

Chuan MT, Tsai YJ, Wu MC. Effectiveness of psoralen photochemotherapy for vitiligo. J Formos Med Assoc. 1999;98(5):335-40.

Pathak MA. Phytophotodermatitis. Clin Dermatol 1986;4:102-21.

Gonzalez E, Gonzalez S. Drug photosensitivity, idiopathic photodermatoses, and sunscreens. J Am Acad Dermatol. 1996;35:871-85.

Kavli G, Volden G. Phytophotodermatitis. Photodermatol. 1984;1(2):65-75.

Alouani I, Fihmi N, Zizi N, Dikhaye S. Phytophotodermatitis following the use of Ammi Majus Linn (Bishop’s weed) for vitiligo. Our Dermatol Online. 2018;9(1):93-94.

Plants of the World Online.
(Accessed on 09 May 2021).

Yarnell E, Abascal K. Nigella sativa: holy herb of the Middle East. Altern Complement Ther. 2011;17:99–105.

Cheikh-Rouhou S, Besbes S, Hentati B, et al. Nigella sativa L.: chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007;101:673-81.

Ghosheh OA, Houdi AA, Crooks PA. High performance liquid chromatographic analysis of the pharmacologically active quinines and related compounds in the oil of the black seed (Nigella sativa L.). J Pharm Biomed Anal. 1999;19(5):757-62.

Kokdil G, Yilmaz H. Analysis of the fixed oils of the genus Nigella L. (Ranunculaceae) in Turkey. Biochem Syst Ecol. 2005;33:1203-9.

Nickavar B, Mojab F, Javidnia K, Amoli MAR. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran Z. Naturforsch. 2003;58c:629-31.

Jain A, Mal J, Mehndiratta V, Chander R, Patra SK. Study of oxidative stress in vitiligo. Indian J Clin Biochem. 2011;26(1):78-81.
DOI: 10.1007/s12291-010-0045-7

Al-Saleh IA, Billedo G, El-Doush II. Levels of selenium, DL-atocopherol, DL-b-tocopherol, all-trans-retinol, thymoquinone and thymol in different brands of Nigella sativa seeds. J Food Compos Anal. 2006;19:167-75.

Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000;14:323-8.

El-Saleh SC, Al-Sagair OA, Al-Khalaf MI. Thymoquinone and Nigella sativa oil protection against methionine-induced hyperhomocysteinemia in rats. Int J Cardiol. 2004;93:19-23.

Ali SA, Meitei KV. Nigella sativa seed extract and its bioactive compound thymoquinone: The new melanogens causing hyperpigmentation in the wall lizard melanophores. J Pharm Pharmacol. 2011;63(5):741-6.

Islam SN, Begum P, Ahsan T, Huque S, Ahsan M. Immunosuppressive and cytotoxic properties of Nigella sativa. Phytother Res. 2004;18(5):395-8

Chattopadhyay I, Kaushik B, Uday B, Ranajit KB. Turmeric and curcumin: Biological actions and medicinal applications. Curr Sci. 2004;87(1):44-53.

Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal BB Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharmaceutical Crops. 2011;2:28-54.

Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med. 2016;7(2):205-33.

Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B. Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol Biochem Behav. 2010;96:378-85.

Kalpravidh RW, Siritanaratkul N, Insain P, Charoensakdi R, Panichkul N, Hatairaktham S, et al. Improvement in oxidative stress and antioxidant parameters in beta-thalassemia/Hb E patients treated with curcuminoids. Clin Biochem. 2010; 43(4-5):424-9.

Asawanonda P, Klahan SO. Tetrahydrocurcuminoid cream plus targeted narrowband UVB phototherapy for vitiligo: A preliminary randomized controlled study. Photomed Laser Surg. 2010;28(5):679-84.

Pollio A, De Natale A, Appetiti E, Aliotta G, Touwaide A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (rutaceae) in Hippocratic medicine and present practices. J Ethnopharmacol. 2008;116(3):469-82.

Pathak MA, Farrington Daniels F, Fitzpatrick TB. The Presently Known Distribution of Furocoumarins (Psoralens) in Plants. Journal of Investigative Dermatology. 1962;39(3):225-39.

Kambouche N, Merah B, Bellahouel S, Bouayed J, Dicko A, Derdour A, Younos C, Soulimani R. Chemical composition and antioxidant potential of Ruta montana L. essential oil from Algeria. J Med Food. 2008;11(3):593-5.

Wessner D, Hofmann H, Ring J. Phytophotodermatitis due to Ruta graveolens applied as protection against evil spells. Contact Dermatitis. 1999;41:232

Eickhorst K, DeLeo V, Csaposs J. Rue the Herb: Ruta graveolens-Associated Phytophototoxicity. Dermatitis. 2007;18(1): 52-5

Dakhole Prashant, Dakhole Pradnya. Role of Chitrak in the Management of Skin Problem W.S.R. To Shwitra. J Drug Deliv Ther. 2019;9(5):213-5.

Sasikumar, Meenaa, Srilakshmi K, Sriram. HPTLC Analysis of various market sapmles of a traditional drug source-kodiveli International Journal of Pharmacy and Pharmaceutical Sciences. 2010;2(4):0975-1491.

Muhammad HM, Saour KY, Naqishbandi AM. Quantitative and Qualitative Analysis of Plumbagin in the Leaf and Root of Plumbago europaea growing naturally in Kurdistan by HPLC. Iraqi J Pharm Sci. 2009;18:1-6.

de Ruijter A. Plumbago auriculata Lam. In: Schmelzer GH, Gurib-Fakim A, editors. Prota medicinal plants/Plantes médicinales 1. CD-Rom. Wageningen, the Netherlands: PROTA. 2006;11(1).

Tan M, Liu Y, Luo X, Chen Z, Liang H. Antioxidant Activities of Plumbagin and Its Cu (II) Complex. Bioinorg Chem Appl. 2011;2011:898726.

Luo P, Wong YF, Ge L, Zhang ZF, Liu Y, Liu L, et al. Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-κB activation. J Pharmacol Exp Ther. 2010; 335(3):735-42.

Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH. Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol. 2005;57(1):111-6.

Nair SV, Baranwal G, Chatterjee M, Sachu A, Vasudevan AK, Bose C, et al. Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. Int J Med Microbiol. 2016;306(4):237-48.

Sand JM, Bin Hafeez B, Jamal MS, Witkowsky O, Siebers EM, Fischer J, Verma AK. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), isolated from Plumbago zeylanica, inhibits ultraviolet radiation-induced development of squamous cell carcinomas. Carcinogenesis. 2012;33(1):184-90.

Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review, Pharmaceutical Biology. 2014;52(11):1487-503.

Polat M, Oztas P, Dikilitas MC, Alli N. Phytophotodermatitis due to Ficus carica. Dermatol Online J. 2008;14(12):9.

Damjanić A, Akacić B. Furocoumarins in Ficus carica. Planta Med. 1974;26(2):119-23.

Innocenti G, Bettero A, Caporale G. Sulla determinazione dei constituenti cumarinici delle foglie di ficus carica mediante HPLC [Determination of the coumarinic constituents of Ficus carica leaves by HPLC]. Farmaco Sci. 1982;37(7):475-85.

Zaynoun ST, Aftimos BG, Abi Ali L, Tenekjian KK, Khalidi U, Kurban AK. Ficus carica; Isolation and quantification of the photoactive components. Contact Dermatitis. 1984;11(1):21-5.

Rankou H, Ouhammou A, Taleb M, Manzanilla V, Martin G. Anacyclus pyrethrum. The IUCN Red List of Threatened Species; 2015.

DOI: 10.2305/IUCN.UK.2015-4.RLTS.T202924A53798702.en

(Accessed on 13 May 2021).

Kishor K, Lalitha KG. Pharmacognostical studies on the root of Anacyclus pyrethrum DC. Indian Journal of Natural Products and Resources. 2012;3(4):518-52.

Veryser L, Taevernier L, Roche N, Peremans K, Burvenich C, De Spiegeleer B. Quantitative transdermal behavior of pellitorine from Anacyclus pyrethrum extract. Phytomedicine. 2014;21(14):1801-7.

Jawhari FZ, El Moussaoui A, Bourhia M, et al. Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules. 2020;25,5469.

DOI: 10.3390/molecules25225469

Daoudi A, Bammou M, Ibijbijen J, Nassiri L. Antibacterial Activity of Aqueous Extracts of Anacyclus Pyrethrum (L) Link and Corrigiola Telephiifolia Pourr. from the Middle Atlas Region-Morocco. Eur Sci J. 2017:13(33), 116.

Rhizopoulou S. Ecophysiological Adaptations of Asphodelus aestivus auct. to Mediterranean Climate Periodicity: Water Relations and Energetic Status. Ecography. 1997;20(6):626-33.

Ouarghidi A, Martin GJ, Powell B et al. Botanical identification of medicinal roots collected and traded in Morocco and comparison to the existing literature. J Ethnobiology Ethnomedicine. 2013;9:59.

Sbai-Jouilil H, Fadli A, Zidane L. Survey of Ethnomedicinal Plants Used for the Treatment of Gastrointestinal Disorders in Seksaoua Region (Western High Moroccan Atlas). Annu Res Rev Biol. 2017;16(5):1-9.

Guarrera PM. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia. 2005;76(1):1-25.

Passalacqua NG, Guarrera PM, De Fine G. Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia. 2007;78(1):52-68.

Pasdaran A, Hamedi A. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity. Pharm Biol. 2017;55(1):2211-2233.

Missoum A. An update review on Hibiscus rosa sinensis phytochemistry and medicinal uses. J Ayu Herb Med. 2018; 4(3):135-46.

Bayliak MM, Burdyliuk NI, Lushchak VI. Effects of pH on antioxidant and prooxidant properties of common medicinal herbs. Open Life Sci. 2016;11(1):298-307.