METHODS OF EVALUATION AND SCREENING OF CHICKPEA (Cicer arietinum L.) GENOTYPES FOR WILT DISEASE TOLERANCE AND POTENTIAL USAGE OF ARBUSCULAR MYCORRHIZAL FUNGI FOR BIOCONTROL OF WILT: A REVIEW

Main Article Content

. SAMIKSHA
MUKUL KUMAR
SANJEEV KUMAR

Abstract

Fusarium oxysporum f. sp. ciceris (FOC) causes wilt in Chickpea leading to a 90% yield loss depending on the environmental conditions. The review here deals on the tools and constrains associated with screening the diverse cultivar of Chickpea genotypes against biotic stress conditions using biochemical, molecular and phenological assessment. The use of different AMF species like Glomus hoi, Rhizophagus fasciculatus and Funneliformis mosseae for disease control and as biofertilizers on different varieties of the chickpea plant has proved to be beneficial in terms of disease severity reduction and plant growth and development. Although the plants have the potential to show responses against the biotic and abiotic stresses, the use of AMF and other biocontrol agents can induce the defence responses by influencing the biochemical and molecular change in the host plant. Therefore, the significance of the present study is to provide a holistic approach for the identification and screening of suitable wilt resistant genotypes of chickpea. In the future, evaluation of desirable cultivar consisting of FOC tolerance gene may help to utilize the elite genotype in the crop improvement program.

Keywords:
Biofertilizer, arbuscular mycorrhizal fungi, Fusarium wilt, Fusarium exospores, chickpea

Article Details

How to Cite
SAMIKSHA, ., KUMAR, M., & KUMAR, S. (2021). METHODS OF EVALUATION AND SCREENING OF CHICKPEA (Cicer arietinum L.) GENOTYPES FOR WILT DISEASE TOLERANCE AND POTENTIAL USAGE OF ARBUSCULAR MYCORRHIZAL FUNGI FOR BIOCONTROL OF WILT: A REVIEW. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(37-38), 73-83. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/6488
Section
Review Article

References

Zaim S, Bekkar AA, Belabid L. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Arch. Phytopathol. Plant Prot. 2018;51(3-4):217-22.

Singh KB. Chickpea (Cicer arietinum L.), F. Crop. Res. 1997;53(1-3):161-170.

Sharma KD, Muehlbauer FJ. Fusarium wilt of chickpea: Physiological specialization, genetics of resistance and resistance gene tagging. Euphytica. 2007;157(1-2):1-14.

Gaur PM, Jukanti AK, Samineni S, Gowda CLL. Chickpea (Cicer arietinum L.). Breeding of Field Crops, Agrobios (India). 2012;165-189.

Merga B, Haji J. Economic importance of chickpea: Production, value and world trade. Cogent Food Agric. 2019;5(1).

Navas-Cortes JA, Hau B, Jimenez-Diaz RM. Yield loss in chickpeas in relation to development of Fusarium wilt epidemics. Phytopathology. 2000;90(11):1269-1278.

Maitlo SA, Rajput NA, Syed RN, Khanzada MA, Rajput AQ, Lodhi M. Microbial control of Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris. Pakistan J. Bot. 2019;51(6):2261-2268.

Akrami M, Yousefi Z. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonist fungi. Biol. Forum-An Int. J. 2015;7(1):887-892.

Mahmood Y, Khan MA, Javed N, Arif MJ. Comparative efficacy of fungicides and biological control agents for the management of chickpea wilt caused by Fusarium oxysporum f. sp. ciceris. J. Anim. Plant Sci. 2015;25(4):1063-1071.

Abed H, Rouag N, Mouatassem D, Rouabhi A. Screening for Pseudomonas and Bacillus antagonistic rhizobacteria strains for the biocontrol of Fusarium wilt of chickpea. Eurasian J. Soil Sci. 2016;5(3):182.

Singh PK, Singh M, Vyas D. Biocontrol of Fusarium wilt of chickpea using arbuscular mycorrhizal fungi and Rhizobium leguminosorum biovar. Caryologia. 2010;63(4):349-353.

García-Limones C, Dorado G, Navas-Cortés JA, Jiménez-Díaz RM, Tena M. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: Apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. Plant Biol. 2009;11(2):194-203.

Yadav S, Kumar S. Screening and evaluation of Cicer arietinum genotypes against Fusarium wilt under sick field and artificial condition. Asian Jr. of Microbiol. Biotech. Env. Sc. 2019;21(4):1068-1075.

Montakhabi MK, Bonjar GHS, Talebi R. Genetic diversity and population structure of Iranian isolates of Fusarium oxysporum f. sp. ciceris, the causal agent of chickpea wilt, using ISSR and DAMD-PCR markers. Environ. Exp. Biol. 2018;16:291-298.

Ahmad S, Khan MA, Sahi ST, Ahmad R. Identification of resistant sources in chickpea against chickpea blight disease. Arch. Phytopathol. Plant Prot. 2014a;47(15):1885-1892.

Singh R, Sindhu A, Singal HR, Singh R. Biochemical basis of resistance in chickpea (Cicer arietinum L.) against Fusarium wilt. Acta Phytopathol. Entomol. Hungarica. 2003;38(1–2):13-19.

Song H, Wang P, Li C, Han S, Lopez-Baltazar J, Zhang X, Wang X. Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection. Scientific Reports. 2016;6(1).

DOI: 10.1038/srep35245

Peng H, Cheng H, Yu X, Shi Q, Zhang H, Li J, Ma H. Molecular analysis of an actin gene, CarACT1, from chickpea (Cicer arietinum L.). Mol Biol Rep. 2010;37(2):1081-8.

DOI: 10.1007/s11033-009-9844-4

PMID: 19777370

Rathod PJ, Vakharia DN. Biochemical changes in chickpea caused by Fusarium oxysporium f. sp ciceri. International Journal of Plant Physiology and Biochemistry. 2011;3(12):195-204.

Roychowdhury D, Mondal S, Banerjee SK. The effect of biofertilizers and the effect of vermicompost on the cultivation and productivity of maize - A review. Adv. Crop Sci. Technol. 2017;05(01):1-4.

Whipps JM. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can. J. Bot. 2004;82(8):1198-1227.

Matsubara YI, Hasegawa N, Fukui H. Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J. Japanese Soc. Hortic. Sci. 2002;71(3):370-374.

Declerck S, Risede JM, Rufyikiri G, Delvaux B. Effects of arbuscular mycorrhizal fungi on severity of root rot of bananas caused by Cylindrocladium spathiphyllum. Plant Pathol. 2002;51(1):109-115.

Traquair JA. Fungal biocontrol of root diseases: Endomycorrhizal suppression of cylindrocarpon root rot. Can. J. Bot. 1995;73.

Abdel-Fattah GM, Shabana YM. Efficacy of the arbuscular mycorrhizal fungus Glomus clarum in protection of cowpea plants against root rot pathogen Rhizoctonia solani. J. Plant Dis. Protect. 2002;109(2): 207-215.

Kasiamdari RS, Smith SE, Smith FA, Scott ES. Influence of the mycorrhizal fungus, Glomus coronatum and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant Soil. 2002;238(2):235-244.

Dar GH, Zargar MY, Beigh GM. Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using Symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb. Ecol. 1997;34(1):74-80.

Srivastava R, Khalid A, Singh US, Sharma AK. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol. Control. 2010;53(1):24-31.

Song Y, Chen D, Lu K, Sun Z, Zeng R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 2015;6:1-12.

Al-Hmoud G, Al-Momany A. Effect of four mycorrhizal products on Fusarium root rot on different vegetable crops. J. Plant Pathol. Microbiol. 2015;6(255).

DOI: 10.4172/21577471.1000255

Leta A, Selvaraj T. Evaluation of arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). JPPM. 2013;4:159.

Van-Der Heijden MGA, Scheublin TR, Brader A. Taxonomic and functional diversity in arbuscular mycorrhizal fungi - Is there any relationship? New Phytol. 2004;164(2):201-204.

Hao Z, Christie P, Qin L, Wang C, Li X. Control of Fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhical fungus. J. Plant Nutr. 2005;28(11):1961-1974.

Baum C, El-Tohamy W, Gruda N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. (Amsterdam). 2015;187:131-141.

Ahmad Z, Mumtaz AS, Ghafoor A, Ali A, Nisar M. Marker Assisted Selection (MAS) for chickpea Fusarium oxysporum wilt resistant genotypes using PCR based molecular markers. Mol. Biol. Rep. 2014b;41(10):6755-6762.

El Sheikha F. El, Ray RC. Is PCR-DGGE an innovative molecular tool for the detection of microbial plant pathogens. Biological controls for preventing food deterioration: Strategies for pre-and post harvest management. John Wiley & Sons Ltd., (Ed. N. Sharma), John Wiley & Sons Ltd., Chichester, UK. 2014;409- 433.
DOI: 10.1002/9781118533024.ch17

Upasani ML, Limaye BM, Gurjar GS, Kasibhatla SM, Joshi RR, Kadoo NY, Gupta VS. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defence strategies. Sci. Rep. 2017;7(1).

Caballo C, Madrid E, Gil J, Chen W, Rubio J, Millan T. Saturation of genomic region implicated in resistance to Fusarium oxysporum f. sp. ciceris race 5 in chickpea. Mol. Breed. 2019;39(2).

Bertham RRYH, Arifin Z, Nusantara AD. The improvement of yield and quality of soybeans in a coastal area using low input technology based on biofertilizers. Int. J. Adv. Sci. Eng. Inf. Technol. 2019;9(3):787-791.

Agbenin ON, Marley PS. In-vitro assay of some plant extracts against Fusarium oxysporum f. sp. Lycopersici causal agent of tomato wilt. J. Plant Prot. Res. 2006;46(3):215-220.

Alwathnani HA, Perveen K, Tahmaz R, Alhaqbani S. Evaluation of biological control potential of locally isolated antagonist fungi against Fusarium oxysporum under in vitro and pot conditions. Afr. J. Microbiol. Res. 2012;6(2):312-319.

Safir G. The influence of vesicular mycorrhiza on the resistance of onion to Pyrenochaeta terrestris. MS. Thesis, University of Illinois, Urbana; 1968.

Fritz M, Jakobsen I, Lyngkjær MF, Thordal-Christensen H, Pons-Kühnemann J. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza. 2006;16(6):413- 419.

Jiménez-Fernández D, Landa BB, Kang S, Jiménez-Díaz RM, Navas-Cortés JA. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris Races. PLoS ONE. 2013;8(4).

Pozo MJ, Azcón-Aguilar C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 2007;10(4):393-398.

Campos-Soriano L, Segundo BS. New insights into the signalling pathways controlling defence gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 2011;6(4):553-557.

Campos-Soriano L, García-Martínez J, Segundo BS. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. 2012;13(6): 579-592.

Hashem A, Tabassum B, Abd_Allah EF. Omics approaches in chickpea Fusarium wilt disease management. In Management of Fungal Pathogens in Pulses, Springer, Cham. 2020;57-72.