EFFECT OF COUMARIN AND PHENYLALANINE CONJUGATED WITH CHITOSAN NANOPARTICLES ON SECONDARY METABOLITES SYNTHESIS IN CALLUS OF Silybium marianum

Main Article Content

SABAH A. HASSANEN
GHADA A. HEGAZI
MOHAMED I. DIAB
ASMAA A. MAHDI
MOHAMED H. HENDAWEY
KHALED Y. FARROH

Abstract

The effect of chitosan nanoparticles (Chs NPs; 50 and 200 mg/l) either individually or coated with coumarin (40 mg/l) and L-phenylalanine (40 mg/l) were tested for callus growth, silymarin, phenolic compounds and antioxidant activity in Silybum marianum callus. XRD pattern and particle distribution curves of the NPs treatments were assigned. Root explants of in vitro germinated seedlings gave the highest callus formation rate and biomass of healthy friable callus on Murashige and Skoog (MS) medium supplemented with 1.0 mg/l of both 2,4-dichlorophenoxy acetic acid and 6-benzyladenine. Chs NPs (50 mg/l) coated with coumarin (40 mg/l) recorded the maximum value of callus fresh weight (67.85 g), compared to the control and this treatment showed low lipid peroxidation product. However, the lowest malondialdehyde content was recorded when callus was treated with 50 mg/l Chs NPs coated with L-phenylalanine, which showed the maximum radical scavenging activity. Peroxidase activity of callus was superior by the treatment of 200 mg/l Chs NPs coated with coumarin. Overall, NPs treatments were superior in the production of silymarin isomers and phenolic compounds, except for isosilybin B, catechol and cinnamic acid, in comparison to the control. In addition, NPs triggered the accumulation of some silymarin isomers (taxifolin and silydianin) and some phenolics (P-OH-benzoic acid and protocatechuic acid), which were not detected in the control callus. These results confirm the potential of using NPs as elicitors for enhancing the in vitro production of bioactive compounds.

Keywords:
Milk thistle, nano-elicitation, biochemical markers, silymarin, phenolics

Article Details

How to Cite
HASSANEN, S. A., HEGAZI, G. A., DIAB, M. I., MAHDI, A. A., HENDAWEY, M. H., & FARROH, K. Y. (2021). EFFECT OF COUMARIN AND PHENYLALANINE CONJUGATED WITH CHITOSAN NANOPARTICLES ON SECONDARY METABOLITES SYNTHESIS IN CALLUS OF Silybium marianum. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(71-72), 112-130. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/7251
Section
Original Research Article

References

Abenavoli L, Izzo AA, Milić N, Cicala C, Santini A, Capasso R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 2018;32: 2202–2213. Available:https://doi.org/10.1002/ptr.6171

Khan MA, Abbasi BH, Ahmed N, Ali H. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod. 2013;46:105–110. Available:http://localhost/conversion/tmp/scratch/dx.doi.org/10.1016/j.indcrop.2012.12.035

Soto C, Pérez J, García V, Uría E, Vadillo M, Raya L. Effect of silymarin on kidneys of rats suffering from alloxan-induced diabetes mellitus. Phytomedicine. 2010; 17(14):1090–1094. Available:https://doi.org/10.1016/j.phymed.2010.04.011

Aziz M, Saeed F, Ahmad N, Ahmad A, Afzaal M, Hussain S, Mohamed AA, Alamri MS, Anjun FM. Biochemical profile of milk thistle (Silybum marianum L.) with special reference to silymarin content. Food Sci Nut. 2021;9:244-250. Available:https://doi.org/10.1002/fsn3.1990

Sánchez-Maldonado AF, Schieber A, Gänzle MG. Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol. 2011; 111(5):1176-1184. Available:https://doi.org/10.1111/j.1365-2672.2011.05141.x

Karuppusamy SA. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res. 2009; 3(13):1222-1239. Available:https://doi.org/10.5897/JMPR.9000026

Park JS, Seong ZK, Kim MS, Ha JH, Moon KB, Lee HJ, Lee HK, Jeon JH, Park SU, Kim HS. Production of flavonoids in callus cultures of Sophora flavescens Aiton. Plants. 2020;9:688. Available:https://doi.org/10.3390/plants9060688

Khan AK, Kousar S, Tungmunnithum D, Hano C, Abbasi BH, Anjum S. Nano-elicitation as an effective and emerging strategy for in vitro production of industrially important flavonoids. Appl Sci. 2021;11(4):1694. Available:https://doi.org/10.3390/app11041694

Marchev AS, Yordanova ZP, Georgiev MI. Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol. 2020;40(4):443–458. Available:http://dx.doi.org/10.1080/07388551.2020.1731414

Bhaskar R, Xavier LSE, Udayakumaran G, et al. Biotic elicitors: a boon for the in-vitro production of plant secondary metabolites. Plant Cell Tiss Organ Cult; 2021. Available:https://doi.org/10.1007/s11240-021-02131-1

Narayani M, Srivastava S. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev. 2017;16:1227-1252. Available:https://doi.org/10.1007/s11101-017-9534-0

Anjum S, Anjum I, Hano C, Kousar S. Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: Current status and future outlooks. RSC Adv. 2019;9:40404–40423. Available:http://dx.doi.org/10.1039/C9RA08457F

Rivero-Montejo SDJ, Vargas-Hernandez M, TorresPacheco I. Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agriculture. 2021;11(2):134. Available:http://dx.doi.org/10.3390/agriculture11020134

Ali A, Mohammad S, Khan MA, Raja NI, Arif M, Kamil A, Mashwani Z. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif Cells Nanomed Biotechnol. 2019;47:715–724. Available:https://doi.org/10.1080/21691401.2019.1577884

Fazal H, Abbasi BH, Ahmad N, Ali M, Shujait Ali S, Khan A, Wei DQ. Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artif. Cells Nanomed Biotechnol. 2019;47:2553–2561. Available:https://doi.org/10.1080/21691401.2019.1625913

Begum S, Zahid A, Khan T, Khan NZ, Ali W. Comparative analysis of the effects of chemically and biologically synthesized silver nanoparticles on biomass accumulation and secondary metabolism in callus cultures of Fagonia indica. Physiol Mol Biol Plants. 2020;26:1739–1750. Available:https://doi.org/10.1007/s12298-020-00851-w

Khan MA, Wallace WT, Sambi J, Rogers DT, Littleton JM, Rankin SE, Knutson BL. Nanoharvesting of bioactive materials from living plant cultures using engineered silica nanoparticles. Mater Sci Eng C Mater. Biol. Appl. 2020;106:110190. Available:https://dx.doi.org/10.1016%2Fj.msec.2019.110190

Amer A. Biotechnology approaches for in vitro production of flavonoids. J Microbiol Biotechnol Food Sci. 2019;457–468. Available:https://doi.org/10.15414/jmbfs.2018.7.5.457-468

Piras AM, Maisettab G, Sandreschia S, Esinb S, Gazzarria M, Batonib G, Chiellini F. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. Int. J. Biol. Macromol. 2014;67:124–131.

Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett. 2018;16:101–112. Available:https://doi.org/10.1007/s10311-017-0670-y

Ahmad W, Zahir A, Nadeem M, Garros L, Drouet S, Renouard S, Doussot J, Giglioli-Guivarc’h N, Hano C, Abbasi BH. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process Biochem. 2019;79:155–165. Available:http://doi.org/ 10.1016/j.procbio.2018.12.025

Gupta SD, Jatothu B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep. 2013;7:211–220. Available:https://doi.org/10.1007/s11816-013-0277-0

Gabr AMM, Ghareeb H, El Shabrawi HM, Smetanska I, Bekheet SA. Enhancement of silymarin and phenolic compound accumulation in tissue culture of Milk thistle using elicitor feeding and hairy root cultures. J. Genet Eng Biotechnol. 2016; 14(2):327-333. Available:https://doi.org/10.1016/j.jgeb.2016.10.003.

Shah M, Jan H, Drouet S, Tungmunnithum D, Hussain SJ, Hano C, Abbasi BH. Chitosan elicitation impacts flavonolignan biosynthesis in Silybum marianum (L.) Gaertn cell suspension and enhances antioxidant and anti-Inflammatory activities of cell extracts. Molecules. 2021;26(4): 791. Available:https://dx.doi.org/10.3390%2Fmolecules26040791

Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014;39:1644–1667. Available:https://doi.org/10.1016/j.progpolymsci.2014.02.008

Malerba M, Cerana R. Chitosan effects on plant systems-A review. Int J Mol Sci. 2016;17(7):996. Available:https://doi.org/10.3390/ijms17070996

Hassan AS, Ali E, Gaber A, Fetouh MI, Mazrou R. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharan thusroseus (L.) G. Don. Plant Physiol Biochem. 2021;162: 291-300. Available:https://doi.org/10.1016/j.plaphy.2021.03.004

Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol. 2008;18:1729–1734.

Sathiyabama M, Manikandan A. Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants. Carbohydr Polym. 2021;258: 117691. Available:https://doi.org/10.1016/j.carbpol.2021.117691

Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K. Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Sci Rep. 2015;5:Article no. 15195. Available:http://dx.doi.org/10.1038/srep15195

Borges F, Roleira F, Milhanzes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr Med Chem. 2005;12:887–916. Available:https://doi.org/10.2174/0929867053507315

Hyun MW, Yun YH, Kim JY, Kim SH. Fungal and plant phenylalanine ammonia lyase. Mycobiol. 2011;39(4):257-265. Available:http://doi.org/10.5941/MYCO.2011.39.4.257

Hassan SA, Jassim EH. Effect of l-phenylalanine on the production of some alkaloids and steroidal saponins of fenugreek cotyledons derived callus. Pak J Biotechnol. 2018;15(2):481-486.

Elhaak M, Zayed M, Mattar M, Gad D, Dietz K. Optimization of Silybum marianum L. callus production and magnifying callus silymarin accumulation by elicitors or precursors. Int J Adv Pharm Biol Chem. 2016;5(2):148-163.

Firouzi A, Mohammadi SA, Khosrowchahli M, Movafeghi A, Hasanloo T. Enhancement of silymarin production in cell culture of Silybum marianum (L) Gaertn by elicitation and precursor feeding. J Herbs Spices Med Pl. 2013;19(3):262-274. Available:http://doi.org/10.1080/10496475.2013.791908

Rahimi S, Hasanloo T, Najafi F, Khavari-Nejad RA. Enhancement of silymarin accumulation using precursor feeding in Silybum marianum hairy root cultures. Plant Omics. 2011;4(1):34-39.

AbouZid SF, Chen S, Pauli GF. Silymarin content in Silybum marianum populations growing in Egypt. Ind Crops Prod. 2016; 83:729–737. Available:https://doi.org/10.1016/j.indcrop.2015.12.012

Valková V, Ďúranová H, Bilčíková J, Habán M. Milk thistle (Silybum marianum): a valuable medicinal plant with several therapeutic purposes. J Microbiol Biotech Food Sci. 2020;9(4):836-843. Available:https://doi.org/10.15414/jmbfs.2020.9.4.836-843

Murashige T, Skoog FA. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 1962; 15:473-497. Available:https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Calvo P, Remun˜ A´N-Lo´pez C, Vila-Jato J, Alonsom MJ. Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. J App Poly Sci. 1997; 63:125–132. Available:https://doi.org/10.1002/%28SICI%291097-4628%2819970103%2963%3A1%3C125%3A%3AAID-APP13%3E3.0.CO%3B2-4

Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophy. 1968; 125:189–198. Available:http://doi.org/10.1016/0003-9861(68)90654-1

Oktay M, Gulcin L, Kufrevioglu OL. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Sci Technol. 2003;36(2):263-271. Available:https://doi.org/10.1016/S0023-6438(02)00226-8

Worthington Biochemical Corp. Worthington Enzyme Manual. Worthington Biochemical Corp. Freehold, N.J; 1972.

Hatami M, Naghdi Badi H, Ghorbanpour M. Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review. J. Med. Plants. 2019;18:6-36. Available:http://dx.doi.org/10.29252/jmp.3.71.6

Babu RB, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Prog Biomater. 2013;2:8. Available:https://doi.org/10.1186/2194-0517-2-8

Elsharnouby ME, Hassan FAS. Improvement of silymarin content in cell cultures of Silybum marianum by copper sulphate elicitor. Acta Sci Pol Hortorum Cultus. 2018;17(2):105–114. Available:https://doi.org/10.24326/ASPHC.2018.2.9

Al-Badrani SA, Al-Baker RA. Initiation callus cultures from the seedlings of Silybum marianum and estimate their protein content. Raf J Sci. 2021;30(1):21-37. Available:http://doi.org/10.33899/rjs.2021.167683

Rady MR, Saker MM, Matter MA. In vitro culture, transformation and genetic fidelity of Milk Thistle. J. Genet Eng Biotechnol. 2018;16(2):563-572. Available:https://doi.org/10.1016/j.jgeb.2018.02.007

Mattar MZ, Elhaak M, Zayed M, Gad D, Dietz K-J. Optimization of Silybum marianum L. callus production and magnifying callus silymarin accumulation by elicitors or precursors. Int J Adv Pharm Res. 2016;5(2):148-163.

Mekky H, El Sohafy S, Abu El-Khair R, El Hawiet A. Total polyphenolic content and antioxidant activity of Silybum marianum cultures grown on different growth regulators. Int J Pharm Pharm Sci. 2017; 9(4):44-47. Available:http://dx.doi.org/10.22159/ijpps.2017v9i4.16372

Mathew R, Sankar PD. Effect of methyl jasmonate and chitosan on growth characteristics of Ocimum basilicum L., Ocimum sanctum L. and Ocimum gratissimum L. cell suspension cultures. Afr J Biotechnol. 2012;11(21):4759– 4766. Available:https://doi.org/10.5897/AJB11.3183

Zhao JL, Zhou LG, Wu JY. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol. 2010;87(1):137–144. Available:https://doi.org/10.1007/s00253-010-2443-4

Ali M, Abbasi BH, Ali GS. Elicitation of antioxidant secondary metabolites with jasmonates and gibberellic acid in cell suspension cultures of Artemisia absinthium L. Plant Cell Tissue Organ Cult. 2015;120:1099–1106. Available:http://doi.org/10.1007/s11240-014-0666-2.

Hien NQ. Radiation degradation of chitosan and some biological effects. Radiat Process Polysacch. 2004;1422:67-73.

Saleh AM, Madany MMY, González L. The effect of coumarin application on early growth and some physiological parameters in faba bean (Vicia faba L.). J Plant Growth Regul. 2015;34:233–241. Available:http://dx.doi.org/10.1007/s00344-014-9459-4

Juarez-Maldonado A, Ortega-Ortíz H, Pérez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A. Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual. 2016;89. Available:https://doi.org/10.5073/JABFQ.2016.089.023

Pinedo-Guerrero ZH, Hernández-Fuentes AD, Ortega-Ortiz H, Benavides-Mendoza A, Cadenas-Pliego G. Cu nanoparticles in hydrogels of chitosan-PVA affects the characteristics of post-harvest and bioactive compounds of jalapeño pepper. Molecules. 2017;22(6):926. Available:https://doi.org/10.3390/molecules22060926

Mahdi AA. Biochemical changes in heat stressed wheat grown at El Wadi El Gedeed. Dissertation, Fac Sci, Ain Shams Univ, Egypt; 2011.

Masoumian M, Arbakariya A, Syahida A, Mazia M. Effect of precursors on flavonoid production by Hydrocotyle bonariensis callus tissues. Afr J Biotechnol. 2011; 10(32):6021-6029. Available:https://doi.org/10.5897/AJB10.1480

Sharifi-Rad R, Bahabadi SE, Samzadeh-Kermani A, Gholami M. The Effect of non-biological elicitors on physiological and biochemical properties of medicinal plant Momordica charantia L. Iran J Sci Technol Trans A: Sci. 2020;44(1):1315–1326. Available:http://dx.doi.org/10.1007/s40995-020-00939-8

Fouda MS, Hendawey MH, Hegazi GA, Sharada HM, et al. Nanoparticles induce genetic, biochemical, and ultrastructure variations in Salvadora persica callus. J. Genet. Eng. Biotechnol; 2021;19. Article no. 27. Available:https://doi.org/10.1186/s43141-021-00124-3.

Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P. Silymarin synthesis and degradation by peroxidases of cell suspension cultures of Silybum marianum. J Plant Physiol. 2007;164(5):669-74. Available:http://doi.org/ 1016/j.jplph.2006.06.015

Roy A, Bharadvaja N. Establishment of root suspension culture of Plumbago zeylanica and enhanced production of plumbagin. Ind Crops Prod. 2019; 137:419–427. Available:http://dx.doi.org/10.1016/j.indcrop.2019.05.007