ASSESSMENT OF THE GENETIC DIVERSITY OF GLUTENINS BY SDS-PAGE METHOD REVEALS PRIVATE SUBUNITS IN WHEAT PROGENITORS AND LANDRACES FOR BREEDING PURPOSES

Main Article Content

SAHAR BENNANI
AYMANE BOUZIDI
FATIMA GABOUN
MONA TAGHOUTI

Abstract

Wild relatives and landraces are still considered valuable sources to improve beneficial traits for crops breeding purposes. In the present study, the variation of glutenin proteins was assessed for 120 accessions of Triticum, Aegilops genus, landraces and cultivated bread wheat and durum wheat varieties using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoretic (SDS-PAGE) method. High and Low molecular weight glutenin subunits displayed a far greater variation in the accessions, as 38 and 135 alleles were identified respectively. The wide range of glutenin subunits variation has the potential to enhance the genetic variability for improving the quality of wheat. AMOVA showed that the molecular variance among populations (34%) was lower than within populations (66%). According to Nei genetic distance, cluster tree and Jaccard’s coefficient analysis, the bread and durum wheat varieties groups were the most distant from the other groups of wild relatives and landraces with similarity values ranging from 0.745 to 0.89. All the groups performed high polymorphic patterns and relatively low heterozygosity levels due to the dominance of specific bands. The highest diversity levels were in landraces (78) and Aegilops genus (68). On the other hand, the lowest levels of diversity were found in durum and bread wheat varieties groups (22 and 29 respectively) confirming the reduced genetic diversity due to the selection pressure of breeding programs. These results provide the possibility for further research aiming to investigate the effects on quality traits of the described variation, including the specific effects of rare and novel alleles, and their usefulness for cultivars improvement.

Keywords:
Triticum, wild relatives, landraces, glutenin, SDS-PAGE, genetic diversity

Article Details

How to Cite
BENNANI, S., BOUZIDI, A., GABOUN, F., & TAGHOUTI, M. (2021). ASSESSMENT OF THE GENETIC DIVERSITY OF GLUTENINS BY SDS-PAGE METHOD REVEALS PRIVATE SUBUNITS IN WHEAT PROGENITORS AND LANDRACES FOR BREEDING PURPOSES. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(71-72), 166-179. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/7259
Section
Original Research Article

References

Arzani A, Ashraf M. Cultivated ancient wheats (Triticum spp.):A potential source of health-beneficial food products. Comprehensive Reviews in Food Science and Food Safety. 2017;16:477- 488.

López-Fernández M, Pascual L, Faci I, Fernández M, Ruiz M, Benavente E, Giraldo P. Exploring the end-use quality potential of a collection of spanish bread wheat landraces. Plants. 2021;10:620.

Grassini P, Eskridge KM, Cassman KG. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications. 2013;4.

Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A, Ban T, Vikram P. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany. 2015;(66)12:3477-3486.

Kim K-H, Mostafa Kamal AH, Shin K-H, Choi J-S, Heo H-Y, Woo S-H. Large-scale proteome investigation in wild relatives (A, B, and D genomes) of wheat. Acta Biochimica et Biophysica Sinica. 2010;(42)10:709-716.

Sofalian O, Valizadeh M. Investigation of Seed Storage Proteins in some Wild Wheat Progenitors Using Sds-Page and Acid-Page. Not. Bot. Hort. Agrobot. Cluj. 2009 ;37 (1) :179-182.

Sansaloni C, Franco J, Santos B, Percival-Alwyn L, Singh S, Petroli C, Campos J, Dreher K, et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nature Communications. 2020;(11):4572.

Rufo R, Alvaro F, Royo C, Soriano JM. From landraces to improved cultivars:Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS ONE. 2019;14(7):e0219867.

Bassi F, Brahmi H, Sabraoui A, Amri A, Nsarellah N, Nachit MM, Al-Abdallat A, Chen MS, Lazraq A, El Bouhssini M. Genetic identification of loci for Hessian fly resistance in durum wheat. Mol. Breed. 2019;(39):24.

Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics. 2019;(51):885-895.

Cakmak İ, Torun A, Millet E, Feldman M, Fahima T, Korol A, et al. Triticum dicoccoides:An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition. 2004 ;50 :1047–1054.

Talini RF, Brandolini A, Miculan M, Brunazzi A, Vaccino P, Pe ME, Dell’Acqua M. Genome wide association study of agronomic and quality traits in a world collection of the wild wheat relative Triticum urartu. The Plant Journal. 2019;102:555–568.

Reynolds M, Dreccer F, & Trethowan R. Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany. 2007;58(2):177–186.

El Hassouni K, Belkadi B, Filali-Maltouf A, Tidiane-Sall A, Al-Abdallat A, Miloudi N, Bassi FM. Loci controlling adaptation to heat stress occurring at the reproductive stage in durum wheat. Agronomy. 2019;9(8):414.

Chandra D, Sharma V, Saharan V, Jat BS. Protein landmarks for diversity assessment in wheat genotypes. African Journal of Biotechnology. 2013;12 (29):4640-4647.

Payne PI, Corfield KG. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta. 1979;(145):83-88.

Jackson EA, Holt LM, Payne PL. Characterization of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes. Theoretical and Applied Genetics. 1983;66:29- 37.

Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica. 2001;(119):59-67.

Tran KD, Konvalina P, Capouchova I, Janovska D, Lacko-Bartosova M, Kopecky M, Thi Tran PX. Comparative Study on Protein Quality and Rheological Behavior of Different Wheat Species. Agronomy. 2020;(10):1763.

Payne PI, Nightinale MA, Krattiger AF, Holt LM. The relationship between HMW glutenin subunit composition and the bred-making quality of British grown wheat varieties. Journal of the Science of Food and Agriculture. 1987;40:51-65.

Singh NK. and Shepherd KW. Linkage mapping of the genes controlling endosperm proteins in wheat. 1- Genes on the short arms of group 1 chromosomes. Theor. Appl. Genet. 1988 ;66 :628-641.

Cassidy BG, Dvorak J, Anderson OD. The wheat lowmolecular- weight glutenin genes:characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet. 1998;96:743-750.

Payne PI, Holt LM, Jackson EA, Law CN. Wheat storage proteins:their genetics and potential for manipulation by plant breeding. Philos. Trans. R. Soc. Lond. Ser. B. 1984;304 :359-371.

Singh AK, Sivaramakrishnan S, Mengesha MH, Ramaih CD. Phylogenetic relations in section Arachis based on seed protein profile. Theor Appl Genet. 1991;82:593-597.

Payne PI, Lawrence G. Catalogue of alleles for the complex gene loci Glu-A1, Glu-B1 and Glu-D1 which code high molecular weight subunits in hexaploid wheat. Cereal Research Communications. 1983;11:29–35.

McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ. Appels R Catalogue of gene symbols for wheat. In Proceedings of the 10th Int. Wheat Genetic Symposium. 2003 ;4. Rome, Italy.

Peakall R, Smouse PE. GenAlEx 6.5:Genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;1:1-3.

Nei M. Genetic distance between populations. The American Naturalist. 1972;106:283–392.

Excoffier L, Peter E, Smouse PE, Quattro JM, et al. Analysis of molecular variance inferred from metric distances among DNA haplotypes:Application to human mitochondrial DNA restriction sites. Genetics. 1992 ;131:479-491.

Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Natl. 1908;44:223-270.

Laido`G, Mangini G, Taranto F, Gadaleta A, Blanco A. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.). Estimated by SSR, DArT and Pedigree Data. PLoS One. 2013;8(6):e67280.

Alayachew SA, Geletu KT. Genetic diversity of Ethiopian emmer wheat Triticum dicoccum Schrank landraces using seed storage proteins markers. African Journal of Biotechnology. 2017;16 (16):889-894.

Geleta N, Grausgruber H. Morphological and quality traits variation in tetraploid (Triticum turgidum l.) and hexaploid (Triticum aestivum l.) wheat accessions from Ethiopia. Agricultural Science Research Journals. 2013;3(8):229-236.

Filip E. Composition of High Molecular Weight Glutenin Subunits in Polish Common Wheat Cultivars (Triticum aestivum L.). Hindawi Journal of Food Quality. 2018;ID 2473420, 8 pages.

Melissa Garcia M, Eckermann P, Haefele S, Satija S, Sznajder B, Timmins A, Baumann U, Wolters P, Mather DE, Fleury D. Genome wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia. PLoS ONE. 2019;14(2):e0211730.

Moragues M, Zarco-Hernández J, Moralejo MA, Royo C. Genetic diversity of glutenin protein subunits composition in durum wheat landraces (Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey) from the Mediterranean Basin. Genetic Resources and Crop Evolution. 2006;53:993-1002.

Aguiriano E, Ruiz M, Fité R, Carrillo JM. Genetic variation for glutenin and gliadins associated with quality in durum wheat (Triticum turgidum L. ssp. turgidum) landraces from Spain. Spanish Journal of Agricultural Research. 2008;6:599-609.

Sissons MJ, Batey IL. Protein and starch properties of some tetraploid wheats. Cereal Chemistry. 2003;80:468-475.

Nazco R, Peña RJ, Ammar K, Villegas D, Crossa J, Moragues M, Royo C. Variability in glutenin subunit composition of Mediterranean durum wheat germplasm and its relationship with gluten strength. Journal of Agricultural Science. 2014;152:379-393.

Faris JD, Zhang Q, Chao S, Zhang Z, Xu S. Analysis of agronomic and domestication traits in a durum × cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map. Theor. Appl. Genet. 2014;127:2333–2348.

Pour-Aboughadareh A, Kianersi F, Poczai P, Moradkhani H. Potential of Wild Relatives of Wheat:Ideal Genetic Resources for Future Breeding Programs. Agronomy. 2001;11:1656.

Nazco R, Villegas D, Ammar K, Peña RJ, Morague M, Royo C. Can Mediterranean durum wheat landraces contribute to improved grain quality attributes in modern cultivars? Euphytica. 2012;185:1–17.

Cox TS. Deepening the wheat gene pool. J. Crop Prod. 1997;1:1-25.

Tanksley SD, McCouch SR. Seed banks and molecular maps:unlocking genetic potential from the wild. Science. 1997;277:1063-1066.

Reif JC, Zhang P, Dreisigacker S, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE. Wheat genetic diversity trends during domestication and breeding. Theor. Appl. Genet. 2005;110:859-864.

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri,M, Salvi S, Milner SG, Luigi Cattivelli L. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014;12:787-796.

Janni M, Cadonici S, Bonas U, Grasso A, Dahab AD, Visioli G, Pignone D, Ceriotti A, Marmiroli N. Gene-ecology of durum wheat HMW glutenin reflects their diffusion from the center of origin. Scientific Reports. 2018;8:16929. |

Rodriguez-Quijano M, Nieto-Taladriz MT, Carrillo J. Polymorphism of high molecular weight glutenin subunits in three species of Aegilops. Genetic Resources and Crop Evol. 2001;48:599-607.

Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub B, Brunel D, Beckert M, Charmet G. Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome. 2006;49:1131-1139.

Utebayev M, Dashkevich S, Bome N, Bulatova K, Shavrukov Y. Genetic diversity of gliadin-coding alleles in bread wheat (Triticum aestivum L.) from Northen Kazakhstan. Peer J. 2019;7:e7082.

Alvarez JB, Moral A, Luis M. Polymorphism and Genetic Diversity for the Seed Storage Proteins in Spanish Cultivated Einkorn Wheat (Triticum monococcum L. ssp. Monococcum). Genetic Resources and Crop Evolution. 2006 ;53 (5):1061-10670.

Afshan S, Naqvi FN. Allelic Variation in High Molecular Weight Glutenin Subunits in Pakistani Bread Wheat Genotypes. Cereal Research Communications. 2011;(39) 1:109-119.

Wang X, Luo G, Yang W, Li Y, Sun J, Zhan K, Liu D, Zhang A. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu. BMC Plant Biol. 2017;17:112.

Chegdali Y, Ouabbou H, Essamadi A, Fausto Cervantes F, Ibba MI, Guzmán C. Assessment of the Glutenin Subunits Diversity in a Durum Wheat (T. turgidum ssp. durum) Collection from Morocco. Agronomy. 2020;10:957.

Taghouti M. Study of the genetic diversity of Moroccan durum wheat, Estimation of the genetic gain achieved during the 20th and 20th centuries in terms of productivity and quality and perspectives towards a national varietal mapping. Doctoral thesis. Faculty of Sciences Kenitra, Life and Environmental Sciences.2019;170 pages.

Hamrick JL, Godt MJW. Allozyme diversity in plant species. In:Plant population genetics, breeding and germplasm source. Brown, A.H.D., Clegg, M.T., Kahler, A.L. & Weir, B.S. (eds.), Sunderland, MA:Sinauer. 1989;pp. 43-63.

Wingen L, Orford S, Goram R, Leverington-Waite M, Bilham L, Patsiou TS, Ambrose M. Establishing the A.E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. Theor. Appl. Genet. 2014;127:1831-1842.

Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Pierre CS, Payne T. Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement. PLoS ONE. 2015;10(7):e0132112.

Riaz A, Hathorn A, Dinglasan, E, Ziems L, Richard C, Singh D, Mitrofanova O, Afanasenko O, Aitken E, Godwin I, Hickey L. Into the vault of the Vavilov wheats:Old diversity for new alleles. Genetic Resources and Crop Evolution. 2017;64:531-544.

Dotlačil L, Hermuth J, Stehno Z, Dvořáček V, Bradová J, Leišová L. How Can Wheat Landraces Contribute to Present Breeding? Czech J. Genet. Plant Breed. 2010;46:(Special Issue):S70-S74.

Alzahib RH, Migdadi HM, Ghamdi AA, Alwahibi MS, Afzal, M, Elharty EH, Alghamdi SS. Exploring genetic variability among and within Hail Tomato landraces based on Sequence-Related Amplified Polymorphism Markers. Diversity. 2021;13:135.

Cherdouh A, Khelifi D, Carrillo JM, Nieto-Taladriz MT. The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars. Plant Breed. 2005;124:338-342.

Ruiz M, Bernal G, Giraldo P. An update of low molecular weight glutenin subunits in durum wheat relevant to breeding for quality. J. Cereal Sci. 2018;83:236-244.

Chacón EA, Vázquez FJ, Giraldo P, Carrillo JM, Benavente E, Rodríguez-Quijano M. Allelic Variation for Prolamins in Spanish Durum Wheat Landraces and its Relationship with Quality Traits. Agronomy. 2020;10:136.

Taghouti M, Rhrib K, Gaboun F. Exploiting landrace genetic diversity for germplasm enhancement in durum wheat breeding in Morocco. Proceedings of the International Symposium on Genetics and breeding of durum wheat. Bari :CIHEAM. 2014 ;p. 1 09 -11 9 (Options Méditerranéennes :Série A. Séminaires Méditerranéens ;n.1 1 0)

Taghouti M, Nsarellah N, Rhrib K, Benbrahim N, Amallah L, Rochdi A. Evolution from durum wheat landraces to recent improved varieties in Morocco in terms of productivity increase to the detriment of grain quality. Rev. Mar. Sci. Agron. Vét. 2017;5 (4):351-358.

Ganeva G, Korzum V, Landjeva S, Popova Z. Genetic diversity assessment of Bulgarian durum wheat (Triticum durum Desf.) landraces and modern cultivars using microsatellites markers. Gen. Res. Crop E. 2010;57:273-285.

Ahmadpoor F, Asghari-Zakaria R, Firoozi B, Shahbazi H. Investigation of diversity in Aegilops biuncialis and Aegilops umbellulata by A-PAGE. Natural Product Research. 2014;28(19):1-11.

Baalbaki R, Hajj-Hassan N, Zurayk R. Aegilops species from semiarid areas of Lebanon:variation in quantitative attributes under water Stress. Crop Sci. 2006;46:799-806.

Colmer TD, Flowers J, Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57:1059-1078.

Valkoun JJ. Wheat pre-breeding using wild progenitors. Euphytica. 2001;119:17-23.

Yumurtaci A. Utilization of wild relatives of wheat, barley, maize and oat in developing abiotic and biotic stress tolerant new varieties. Emir. J. Food Agric. 2015;27 (1):1-23.

Sohail Q, Inoue T, Tanaka H, Eltayeb EA, Matsuoka Y, Tsujimoto H. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed. Sci. 2011;61:347-357.

Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H. A Novel Pair of HMW Glutenin Subunits from Aegilops searsii Improves Quality of Hexaploid Wheat. Cereal Chemistry. 2009;86(1):26-32.

Xu SS, Khan K, Klindworth DL, Nygard G. Evaluation and characterization of high molecular weight 1D-glutenin subunits from Aegilops tauschii in synthetic hexaploid wheats. J. Cereal Sci. 2010;52:333-336.

Rehman A, Evans N, Gianibelli MC, Rose RJ. Allelic variation in high and low molecular weight glutenins at the Glu-Dt locus of Aegilops tauschii as a potential source for improving bread wheat quality. Aust. J. Agric. Res. 2008;59:399-405.

Zhang Y, Tang JW, Yan J, Zhang YL, Zhang Y, Xia XC, He ZH. The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. J. Cereal Sci. 2009;50:219-226.

Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z. Wheat seed storage proteins:Advances in molecular genetics, diversity and breeding applications. Journal of Cereal Science. 2014;60:11-24.

Obreht D, Kobiljski B, Djan M, Vapa L. Identification of Glu-B1 alleles in bread wheat cultivars using PCR. Genetika. 2007;39:23-28.

Uthayakumaran S, Beasley HL, Stoddard FL, Keentok M, Phan-Thien N, Tanner RI, Békés F. Synergistic and additive effects of three high molecular weight glutenin subunit loci, I. Effects on wheat dough rheology. Cereal Chem. 2002;79:294-300.

Nucia A, Okon S, Tomczynska-Mleko M. Characterization of HMW glutenin subunits in European spring common wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 2019;66:579-588.

Sun X. Hu S, Liu X, Qian W, Hao S, Zhang A, Wang D. Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theor. Appl. Genet. 2006;113:631-641.

Jiang CX, Pei YH, Zhang YZ, Li XH, Yao DN, Yan YM, Ma WJ, Hsam SLK, Zeller FJ. Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas. 2008;145:92-98.

Liu L, Ikeda TM, Branlard G, Peña RJ, Rogers WJ, Lerner SE, Kolman MA, Xia XC, Wang LH, Ma WJ. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol. 2010;10:124.

Ciaffi M, Margiotta B, Colaprico G, De-Stafanis E, Sgrulletta D, Lafiandra D. Effect of high temperatures during grain filling on the amount of insoluble proteins in durum wheat. J. Genet. Breed. 1995;49:285-296.

Tranquilli G, Cuniberti M, Gianibelli MC, Bullrich L, Larroque O, MacRitchie F, Dubcovsky J. Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. Journal of Cereal Science. 2002;36(1):9-18.

Nesbitt M and Samuel D. From Staple Crop to Extinction? The Archaeology and History of the Hulled Wheats. Hulled Wheats. 1996;4:41-100.

Volante A, Barabaschi D, Marino R, Brandolini A. Genome-wide association study for morphological, phenological, quality, and yield traits in einkorn (Triticum monococcum L. subsp. monococcum). G3. 2021;11(11):1-12.

Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor. Appl. Genet. 2007;114:351-358.

Sodkiewicz W, Strzembicka A, Apolinarska B. Chromosomal location in triticale of leaf rust resistance genes introduced from Triticum monococcum. Plant Breeding. 2008;127:364–367.

Brandolini A, Hidalgo A. Wheat germ:Not only a by-product. International Journal of Food Sciences and Nutrition. 2011;63 Suppl 1(S1):71-4.

Brandolini A, Hidalgo A, Moscaritolo S. Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J. Cereal Sci. 2008;47:599–609.

Corbellini M, Empilli S, Vaccino P, Brandolini A, Borghi B, Heun M, Salamini F. Einkorn characterization for bread and cookie production in relation to protein subunit composition. Cereal Chem. 1999;76(5):727-733.

Borghi, B., Castagna, R., Corbellini, M., Heun, M., and Salamini, F. Bread making quality of einkorn wheat (Triticum monococcum ssp. monococcum). Cereal Chem. 1996;73:208-214.