MOLECULAR STRUCTURE AND VIBRATIONAL SPECTRA OF THYMINE USING Ab-Initio AND DENSITY FUNCTIONAL THEORY

Main Article Content

BRIJESH KUMAR SHARMA
ACHCHHE LAL
VIPIN B. SINGH
DEVENDRA K. SINGH

Abstract

This work deals with theoretical and experimental study of vibrational spectra of thymine. The geometrical parameters (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities and Raman scattering activities have been calculated using ab- initio MP2 (second-order Møller–Plesset perturbation theory) method and the density functional B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional), X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) and B3PW91 (Becke three-parameter hybrid functional combined with Perdew-Wang correlation functional) methods employing 6-311++G(d,p) as the basis set. The FTIR (Fourier-transform infrared spectroscopy) of the thymine in the range 400–4000 cm−1 in the solid phase has been recorded. A detailed interpretation of the infrared spectra of thymine has been reported. The theoretical optimized geometry parameters and wave numbers are in good agreement with the corresponding experimental values and with results found in most of the literature in most of cases without scaling.

Keywords:
Thymine, FTIR, molecular structure, vibrational spectra, MP2, DFT calculations

Article Details

How to Cite
SHARMA, B. K., LAL, A., SINGH, V. B., & SINGH, D. K. (2021). MOLECULAR STRUCTURE AND VIBRATIONAL SPECTRA OF THYMINE USING Ab-Initio AND DENSITY FUNCTIONAL THEORY. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 22(71-72), 323-331. Retrieved from https://ikprress.org/index.php/PCBMB/article/view/7295
Section
Original Research Article

References

Photoenzymes: A Novel Class of Biological Catalysts,Begley TP. Acc. Chem. Res. 1994;27:394.

Thymine dimers bend DNA, Husain I, Griffith J, Sancar A. Proc. Natl. Acad. Sci. U.S.A. 1988;85:2558.

Binding of E. coli DNA photolyase to a defined substrate containing a single T< >T dimer,, Husain I, Sancar A. Nucleic Acids Res. 1987;15:1109.

Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase Kim ST, Sancar A. Biochemistry. 1991;30:8623.

Environmental UV photobiology, Mitchell DL, Karentz D. In environmental UV photobiology; Young, A. R., et al., Eds,Plenum Press: New York. 1993;345.

Molecular structure and effects of intermolecular hydrogen bonding on the vibrational spectrum of trifluorothymine, an antitumor and antiviral agent, Çağrı Çırak, Nurettin Koç. J Mol Model. 2012;18:4453–4464.

Pyrimidine as antiinflammatory agent: A review, Amir M, Javed SA, Kumar H. Indian J Pharm Sci. 2007;69:337–343.

Crystal and molecular structure of 5-trifluorothymine, a metabolite from human urine: Role of fluorine in stacking and hydrogen bonded interactions, Rajeswaran M, Srikrishnan T. J Fluorine Chem. 2008;129:493–497.

Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-Bromo-2′-deoxyuridine, Çırak Ç, Sert Y, Ucun F. Spectrochim Acta A. 2012;92:406–414.

Vibrational assignments of six-membered heterocyclic compounds: Normal vibrations of 6-amino uracil and 6-amino 2-thio uracil, Aruna S, Shanmugam G. Spectrochim Acta A. 1985;41:531–536.

Normal coordinate analysis treatment on uracil in solid state, Bandekar J, Zundel G. Spectrochim Acta A. 1983;39:343–355.

Synthesis of 3-alkyl (Aryl)-4-alkylidenamino-4, 5-dihydro-1H-1, 2, 4-triazol-5-ones and 3-alkyl-4-alkylamino-4, 5-dihydro-1H-1, 2, 4-triazol-5-ones as antitumor agents, Demirbaş N, Uğurluoğlu R, Demirbaş. Bioorg Med Chem. 2002;10:3717–3723.

Molecular structure and effects of intermolecular hydrogen bonding on the vibrational spectrum of trifluorothymine, an antitumor and antiviral agent, Emilsson H, Selander H, Gaarder J, Eur J Med Chem. 1985;20:333–337.

Molecular structure and effects of intermolecular hydrogen bonding on the vibrational spectrum of trifluorothymine, an antitumor and antiviral agent, Swarup S, Saxena VK, J Indian Chem Soc. 1991;68:302–304.

Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide, Rastogi VK, Mittal HP, Sharma YC, Sharma SN, Royal Society of Chemistry. 1991;403–404.

Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation, Fodor SPA, Rava RP, Hays TR, Spiro TG. J. Am. Chem. Soc. 1985;107:1520.

Resonance Raman Spectroscopy of Metalloproteins Using CW Laser Excitation, Tsuboi M, Nishimura,Y, Hirakawa AY. in Biological Applications of Raman Spectroscopy; Spiro, T. G., Ed,Wiley-Interscience: NewYork. 1987;2:109.

Model Studies of DNA Photorepair: Reduction Potentials of Thymine and Cytosine Cyclobutane Dimers Measured by Fluorescence Quenching, Okamura T, Sancar A, Heelis PF, Begley TP, Hirata Y, Mataga NJ. Am. Chem. Soc. 1991;113: 3143.

Determination of rates and yields of interchromophore (folate .fwdarw. flavin) energy transfer and intermolecular (flavin .fwdarw. DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy, Kim ST, Heelis PF, Okamura T, Hirata Y, Mataga N, Sancar A. Biochemistry. 1991;30:11262.

FT-IR and laser-Raman spectra of thymine and thymidine, Mathlouthi M, Seuvre AM, Koenig JL. Carbohydr. Res. 1984;134: 23.

Comparison of the hydrogen bond interaction dynamics in the guanine and cytosine crystals: ab initio molecular dynamics and spectroscopic study, Wojcik MJJ. Mol. Struct. 1988;189:239.

IR matrix isolation studies of nucleic acid constituents: the spectrum of monomeric thymine, Nowak MJJ. Mol. Struct. 1989;193:35.

Radiation Induced Molecular Phenomena in Nucleic Acids, Graindourze M, Smets J, Zeegers-Huyskens T, Maes GJ. Mol. Struct. 1990;222:345.

The infrared spectra of matrix isolated uracil and thymine: an assignment based on new theoretical calculations, Les A, Adamowicz L, Nowak MJ, Lapinski L. Spectrochim. Acta. 1992;48A:1385.

The infrared spectra of uracil, thymine, and adenine in the gas phase, Colarusso P, Zhang K, Guo B, Bernath PF. Chem. Phys. Lett. 1997;269;39.

Scaled quantum mechanical force fields and vibrational spectra of solid state nucleic acid constituents V: thymine and uracil, Florian J, Hrouda V. Spectrochim. Acta. 1993;49A:921.

Density Functional Study of Absorption and Resonance Raman Spectra of Pyromellitic Diahydride (PMDA) Anion, Rush III, T, Peticolas WLJ. Phys. Chem. 1995;99:14647.

Vibrational modes in thymine molecule from an ab initio MO calculation, Aida M, Kaneko M, Dupuis M, Ueda T, Ushizawa K, Ito G, Kumakura A, Tsuboi M. Spectrochim. Acta. 1997;A53:393.

Raman scattering tensors in thymine molecule from an ab initio MO calculation, Tsuboi M, Kumakura A, Aida M, Kaneko M, Dupuis M, Ushizawa K, Ueda T. Spectrochim. Acta. 1997;A53:409.

Study of the thymine molecule: Equilibrium structure from joint analysis of gas-phase electron diffraction and microwave data and assignment of vibrational spectra , Vogt N, Leonid S, Khaikin LN, Grikina OE, Rykov AN, Vogt J. J. Phys. Chem. A. 2008;112:7662–7670.

Gaussian 09 software package, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgometry JA, Vreven Jr. T, Kudin KN, Burant JC, Milliam JM, Iyengar SS, Jomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li JE. Knox, HP. Hratchian, J.B. Cross T, Adamo C, Jaramillo J, Gomperts R, Stratmann R.E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth G.A, Salvador P, Dannenberg J.J, Zakrzewski V. G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresamn J.B, Ortiz JV, Cui A, Baboul A.G, Clifford S, Cioslowski J, Stefanov BB, Liu G, Lashenko A, Piskorz P, Komaromi I, Martin R.I, Fox DJ, Keith T, Al-Lham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C. and Pople JA, Gaussian 03, Revision C. 02, Gaussian, Inc, Wallingford, CT; 2004.

Gauss View 5.0, Frisch A, Nielson AB, Holder AJ. GAUSSVIEW User Manual Gaussian Inc. Pittsburgh, PA; 2000. Gaussian09Available:http://www.gaussian.com

The crystal structure of thymine,Ozeki K, Sakabe N, Tanaka J. Acta Cryst. 1969;B25:1038.