VORTEX DYNAMICS STUDY FOR COUPLED ULTRACOLD ATOMIC SYSTEMS

PDF

Published: 2021-12-20

Page: 39-43


GUOJUN GAO

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

QINGCHUN ZHOU

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

WEI WANG *

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China and Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.

YING WANG *

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

*Author to whom correspondence should be addressed.


Abstract

In this study, vortex evolution dynamics for coupled ultracold atomic systems is investigated. Via the variational method, we derived vortex evolution pattern showing the quasi-stable oscillation state of system under the influence of inter-component interaction. The key quasi-stable quantities like oscillation period and time-varying vortex ring radius are derived. The theoretical results derived in this work can be used to guide experimental study of vortex evolution in coupled ultracold atomic systems.

Keywords: Vortex, Bose-Einstein condensate, variational method


How to Cite

GAO, G., ZHOU, Q., WANG, W., & WANG, Y. (2021). VORTEX DYNAMICS STUDY FOR COUPLED ULTRACOLD ATOMIC SYSTEMS. Journal of Applied Physical Science International, 13(3), 39–43. Retrieved from https://ikprress.org/index.php/JAPSI/article/view/7336

Downloads

Download data is not yet available.

References

Randeria M, Zwerger W, Zwierlein M. The BCS-BEC Crossover and the Unitary Fermi Gases. Springer, Berlin; 2012.

Bang O, Krolikowski W, Wyller J, Rasmussen JJ. Collapse arrest and soliton stabilization in nonlocal nonlinear media., Phys.Rev. E. 2002; 66(2):046619.

Levin K, Fetter A, Dan SK. Ultracold Bosonic and Fermionic Gases. Elsevier, Oxford; 2012.

Wang Y, Yang Y, He SQ, Wang W. Dynamic evolution of vortex solitons for coupled Bose-Einstein condensates in harmonic potential trap, AIP Advances. 2017;7:105209.

Shen M, Wang Q, Shi J, Chen Y, Wang X. Nonlocal incoherent white-light solitons in logarithmically nonlinear media, Phys. Rev. E. 2005;72(2):026604.

Atre R, Panigrahi P K, Agarwal G S. Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation. Phys. Rev. E. 2006; 73:056611.

Wyller J, Krolikowski W, Bang O, Rasmussen JJ. Generic features of modulational instability in nonlocal Kerr media, Phys.Rev. E. 2002; 66(2):066615.

Zhang AX, Xue JK. Dynamics of bright/dark solitons in Bose-Einstein condensates with time-dependent scattering length and external potential. Chin. Phys. Lett. 2008;25:39.

Liu H, He DH, Lou SY, He XT. Bright Soliton Solutions in Degenerate Fermi Gas near Feshbach Resonance, Chin. Phys. Lett. 2009; 26:120308.

Zhang S, Ba JM, Sun YN, Dong L. A generalized (G’/G)-expansion method for the nonlinear schrödinger equation with variable. Coefficients. Z. Naturforsch. 2009;64a:691- 696.

Fei JX, Zheng CL. Exact projective excitations of a generalized (3+1)-dimensional gross-pitaevskii system with varying parameters. Chin. J. Phys. 2013;51:200.

Trallero-Giner C, Drake-Perez JC, Lpez-Richard V, Birman JL. Formal analytical solutions for the GrossCPitaevskii equation. Physica D. 2008;237:2342.

Cheng YS, Li H, Gong RZ. Effects of parameters on the stationary state and self-trapping of three coupled Bose-Einstein condensate solitons. Chin. Opt. Lett. 2005; 3:715-718.

Johnson TH, Bruderer M, Cai Y, Clark SR, Bao W, Jaksch D. Breathing oscillations of a trapped impurity in a Bose gas, EPL. 2012; 98(2):26001.

Li H, Wang DN. Effects of external magnetic trap on two dark solitons of a two-component Bose-Einstein condensate. Chin. Opt. Lett. 2008;6:611-614.

Wang Y, Zhou Y, Zhou S Y. Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential. Scientific Reports. 2016;6:38512.